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Chapter 1 

Introduction 

Bloch waves, the very unusual wave-like disturbances that occur in 
periodic media, have been studied extensively in the context of nearly every 
species of wave. The catalog of work spans the disciplines of acoustics, radio, 
microwave and optical frequency electromagnetics, solid mechanics, quantum 
mechanics, and others. The primary reason for the interdisciplinary interest 
in Bloch waves is the unusual dispersion that is characteristic of Bloch waves. 
With the introduction of some sort of periodic structure into a wave medium, 
the frequency axis becomes divided into an alternating series of frequency bands 
called passbands and stopbands. Passband frequency Bloch waves propagate 
freely and stopband frequency Bloch waves are exponentially attenuated, much 
like an evanescent wave. The so-called "band structure" of the Bloch wave 
dispersion relation is the property of Bloch waves that is most often exploited 
in applications. 

The moniker "Bloch wave" came about following the seminal doctoral 
work of Nobel laureate Felix Bloch in 1928. It was he who showed that the 
quantum mechanical matter wave solutions of the Schrödinger equation that 
governs the dynamics of electrons in a crystal lattice are of a particular form, 
that which today is known as a Bloch wave function. This work forms the basis 
of the quantum mechanical "band theory" of electrical conductivity and semi- 
conductivity in solids (e.g., Kittel, 1986). If the frequency of the matter waves 
that represent the conduction electrons lie in a passband, then the electrons 



"propagate" and the material is a conductor.1 If the electron frequency lies in 
a stopband, the electrons are immobile and the material is an insulator. If the 
frequency lies in a stopband near the edge of a passband, then energy supplied 
to the electron by an electric field (i.e., an applied voltage) may increase the 
electron energy to a sufficient degree that the electron frequency is pushed 
into the passband and the electron becomes mobile. Such materials are semi- 

conductors. 

Since the time of Bloch's work, knowledge of the interesting behavior 
of Bloch waves has gradually leaked from the condensed matter physics com- 
munity into other disciplines. Much of the interest is due to the band structure: 
a periodic medium acts as a traveling wave filter. A classic microwave filter 

design is simply a section of waveguide that is loaded with a periodic array of 
scatterers (e.g., Collin, 1960). Such filters are likewise used in the case of op- 
tical waveguides (Flanders, 1976) and surface acoustic wave devices (Tancrell, 
1974). While the filtration property is probably that which is most frequently 
made use of, other unusual properties of Bloch waves are similarly exploited. 
It is the so-called "slow wave" property of Bloch waves that allows the ex- 
change of energy between a microwave field and a charged particle in the linear 
particle accelerator (Slater, 1948; Slater, 1950) and in the electron beam trav- 
eling wave amplifier (e.g., Collin, 1960). The near-unit reflectivity of periodic 
media at stopband frequencies is exploited to create extremely high Q surface 
acoustic wave oscillators (Bell and Li, 1976) as well as distributed feedback 
lasing cavities (Kogelnik and Shank, 1972). Owing to the dispersion associated 
with passband frequency Bloch waves, periodic media are at times referred to 
as "artificial dielectrics" and are used for phase correction (Bloembergen and 

Sievers, 1970). 

The subject of this dissertation is the propagation of acoustic waves in 
a periodic waveguide. The investigation is both theoretical and experimental. 
The objectives are to (1) show that the solutions to a broad class of periodic 

lrrhe frequency of the matter wave is proportional to the energy of the electron. As elec- 
trons are fermionic, the energy of the most energetic electrons (i.e., the conduction electrons) 
is dependent upon the entire electronic population of the solid and is therefore characteristic 
of the solid. 



acoustic waveguide problems are Bloch waves, (2) characterize the properties 
of the Bloch waves in both the time-harmonic and the transient case, and (3) 
investigate the effect of nonlinearity in the propagation of the Bloch waves. The 
original motivation for the work was an interest in nonlinear dispersive con- 
ventional wave propagation. The hallmark of nonlinearity in the propagation 
of acoustic waves in a nondispersive system is a steadily increasing distortion 
of the waveform with propagation distance. If the acoustic field is sufficiently 
intense, the waveform may eventually distort to the point of shock formation. 
In dispersive nonlinear wave systems, the dispersion is, in some cases, able to 
disrupt the nonlinear distortion process and prevent the formation of shocks. 
As Bloch waves are dispersive, it was conjectured that the introduction of 
some sort of periodic structure into an otherwise uniform waveguide would be 
a means of preventing not only shock formation, but perhaps any significant 
nonlinear distortion. 

While a significant portion of the present work is dedicated to the 
problem of nonlinear Bloch wave propagation, most of the work addresses the 
linear problem. There are two reasons for this. First, it was found that the 
foundations of even the linear theory are weak. As an example, it had not pre- 
viously been shown for anything other than gradually varying waveguides that 
the solution wave functions are indeed Bloch wave functions. It had likewise 
not been shown that the Bloch wave formalism holds in the presence of dissi- 
pative mechanisms. The first several chapters of this dissertation are therefore 
dedicated to the development of a fundamental theory for Bloch waves in a 
broad class of periodic waveguides. The second reason for the large portion 
of linear work is that the findings are quite unusual and therefore interesting! 
While most of the findings apply only to Bloch waves, several of the findings 
apply to dissipative, dispersive conventional waves in general. 

1.1    Past Work 
The previous work on wave propagation in periodic media may be 

divided into two categories: (1) that which specifically addresses the problem 
of acoustic waves in periodic waveguides, and (2) all other work. While the 
only directly relevant previous work is that of the former category, several works 



that belong to the latter do have some degree of relevance. The former category 
represents a fairly small body of work that may readily be reviewed here. The 
latter category, however, is composed of virtually innumerable works, and only 
several of the most relevant are discussed here. 

1.1.1    Past Work on Periodic Acoustic Waveguides 

Previous work on acoustic waves in periodic waveguides has addressed 
two types of periodic waveguide: waveguides with periodically nonuniform 
boundaries, and uniform waveguides that contain a periodic array of scattering 

inclusions. Two basic solution approaches have been used on these problems. 
In the first approach, it is either shown or assumed that the solution wave 
functions are Bloch wave functions. Expressions for the parameters that char- 
acterize the Bloch waves, such as the Bloch dispersion relation, are then derived. 
In the second approach, a perturbation approach, no mention is made of the 
possibility of Bloch wave solutions. The periodic deviation from uniformity is 
taken to be small and its effect on the propagation of waves is investigated 
to leading order. While the Bloch wave approach has been applied to both 
categories of waveguide problem, the perturbation approach has been applied 
only to the periodically nonuniform boundary problem. 

In past works in which the solutions are shown to be Bloch wave func- 
tions, the system is modeled with an equation to which the Floquet theorem 
is directly applicable. The Floquet theorem is applicable to ordinary differen- 
tial equations with periodic coefficients (e.g., Ince, 1956) and shows that the 
solution functions ij){z) have the property 

or, equivalently, are of the form 

iP(z) = 3>(z)ejqz, (1.1) 

where h is the periodicity of the coefficients, $(z + h) = $(z), and q is the 
Bloch wave number. These function are known as Bloch wave functions. Bai 
and Keller (1987), who treat a scattering inclusion problem, model the system 



with the Webster horn equation (see, for example, Morse, 1976) 

82iP     A'{z) <9V      1 #V 
dz2      A{z) dz     % dt2 0, 

which is valid when the changes in cross-sectional area of the duct A(z) are 
sufficiently gradual. In the time-harmonic case the Webster horn equation 
becomes a second order ordinary differential equation with periodic coefficients, 
to which the Floquet theorem is applicable. Note that the Floquet theorem only 
tells us the form of the solution and not the solution itself, which is found by 
use of a strained parameter perturbation approach: the standard wave number 
k is strained to yield the Bloch wave number q. It should be noted that for the 
waveguide geometry treated, the validity of the analysis at frequencies above 
the second stopband frequency is doubtful,2 although the results are reported 
for higher frequencies. Drumheller (1989), who treats a periodically nonuniform 
boundary problem (which accounts for periodic inhomogeneity as well), models 
the system with a periodically inhomogeneous Helmholtz-like equation 

^ + *V = 0. (1.2) 

This is a Helmholtz equation in which the effective wave number K is a periodic 
function of position. The Floquet theorem is applicable to this equation as well. 
The periodic deviation from uniformity is taken to be discrete and the piecewise 
solution in each uniform section of waveguide is found. The condition that the 
piecewise solution be consistent with a Bloch wave solution places a condition 
on q(u). This condition is the Bloch dispersion relation. 

The Bloch waves/piecewise solution approach also appears in two 
other works (Barnes and Kirkwood, 1972; Morse and Ingard, 1986), although 
in both it is assumed that the solution functions are Bloch wave functions. In 
the work of Barnes and Kirkwood (1972), who treat a periodically nonuniform 
boundary problem, the assumption that the solutions are Bloch wave functions 

2For the waveguide geometry treated, the scatterers couple the zeroth and second higher 
order waveguide modes, which are cut on above the second stopband frequency. The Webster 
horn equation is not valid for the case of multi-mode propagation. 



is implicit in their assumption that the impedance is periodic. Morse and 
Ingard (1986), who solve a scattering inclusion problem, simply state that the 
solution is expected to be in the form of a Bloch wave function. The piecewise 
solution is found in the (low frequency) lumped element approximation, which 
is valid when the free-medium wavelength is much larger than a period of the 
waveguide. The treatment of Morse and Ingard is, to the author's knowledge, 
the only one that includes dissipation (the lumped element model includes a 

resistance). 

As was pointed out above, past works in which the second approach, 
the perturbation approach, is taken are all periodically nonuniform boundary 
type waveguide problems (Samuels, 1958; Salant, 1973; Nayfeh, 1974; Nayfeh, 

1975). In these works the possibility of Bloch wave solutions is not addressed. 
The deviation from uniformity in the waveguide boundary is assumed small 
and the boundary condition is expanded about the mean waveguide surface. 
To zeroth order the waveguide is uniform and the solution, owing to the source 
boundary condition, is a forward traveling wave that consists of a single wave- 
guide mode. To first order, the zeroth order forward traveling wave is coupled to 
both a second forward traveling wave and a backward traveling wave. Although 
these secondary waves propagate in the same waveguide mode, they differ in 
spatial frequency. None of the cited works was done in the context of Bloch 
wave propagation, and the secondary waves were not recognized as simply the 
first higher order components in the traveling wave spectral representation of 
a Bloch wave function (a spatial frequency decomposition of Eq.1.1): 

+oo 

p(z)=   Y.  Cne
j(<1+2™/h)z. (1.3) 

n=—oo 

The Webster horn equation is a valid model equation for these problems and 
may be used, in conjunction with the Floquet theorem, to show that the so- 
lutions are indeed Bloch wave functions. It is expected, therefore, that the 
continuation of the perturbation series used in the aforementioned papers be- 
yond leading order would eventually fill in the values of Cn in Eq. 1.3. 

With one exception, the aforementioned work is all purely theoretical. 
Drumheller (1989) measured the response of his periodic waveguide to a very 
wideband (nearly impulsive) excitation. When displayed in spectral form, his 



data show the theoretically predicted scalloping due to passband/stopband 
filtration, which is a qualitative confirmation of the stopband structure of Bloch 

wave dispersion. 

In conclusion, the Bloch wave form of the solution is acknowledged 
in about half of the previous work. When the Bloch wave solution is used, in 
only two papers (Bai and Keller, 1987; Drumheller, 1989) is it shown that the 
solutions are indeed Bloch wave functions. In both cases, a fairly restrictive 
model equation is used in the proof. In only one case is dissipation included in 
the model (Morse and Ingard, 1986), and then only in an ad hoc fashion. In 
the only experimental work (Drumheller, 1989) the investigation is limited to a 
qualitative confirmation of the stopband structure. To the author's knowledge, 
no work has been done on the problems of narrowband pulse propagation (short 
or long range), energy transport, or nonlinear propagation in periodic acoustic 

waveguides. 

1.1.2    Other Relevant Past Work 

Some other relevant work in the general area of waves in periodic 
media, but which does not address acoustic waveguides, is also of interest here. 
The problem of energy transport in a periodic waveguide is treated by Collin 
(1960) for the case of a microwave waveguide. He uses the same approach 
that is used here in the derivation of one of the two energy transport velocities 
that are of interest. He fails, however, to recognize the existence of a second 
significant energy transport velocity. 

The problem of nonlinear wave propagation in periodically inhomoge- 
neous media was first treated by Bloembergen and Sievers (1970) for the optical 
case and, later, in more detail by Tang and Bey (1973) for the optical case and 
by Akhmanov et al. (1975) and Lanina et al. (1978) for the acoustical case. In 
all cases both the fundamental and the second harmonic fields are expressed in 
the traveling wave spectral representation, which are then approximated by a 
truncated series. This approximate representation of a Bloch wave field, how- 
ever, is valid only in the weak dispersion (nearly uniform medium) limit. In 
this dissertation the full Bloch wave field is taken into account and the findings 
are therefore valid when the dispersion is arbitrarily strong. 



It is also worth noting that the approaches outlined in the last section 
are also used in periodic medium problems that do not involve acoustic wave- 
guides. The Bloch waves/piecewise solution approach was used by Achenbach 
and Kittahara (1987) for the problem of waves in an elastic solid with a three- 
dimensional, periodic array of scattering inclusions. Their analysis is interesting 
in that for the frequency range treated, the problem is equivalent to that of 
a uniform, fluid-filled waveguide with a periodic array of scattering inclusions 
along its axis. The Bloch waves/piecewise solution approach has also been 
applied to the problem of wave propagation in a periodically inhomogeneous 
medium (Brekhovskikh, 1980). The medium is modeled with a periodically 
inhomogeneous Helmholtz-type equation as described earlier (Eq. 1.2), and 
Bloch wave solutions are found. Probably the best known application of the 
Bloch waves/piecewise solution method is in the determination of the quantum 
mechanical electronic energy structure for a Kronig-Penney solid (e.g., Kittel, 
1986). The perturbation approach that is outlined in the last section is like- 
wise applicable to the periodically inhomogeneous medium problem. Though 
the author could find no such work, it is expected that the result is the same 
traveling wave spectral series found in the periodically nonuniform waveguide 
problem. 

It should also be pointed out that this dissertation is the continuation 
of the work performed by the author for his Masters research (Bradley, 1991). 
In that work, which treats a periodically nonuniform waveguide problem, the 
Bloch waves/piecewise solutions approach is used and the Bloch dispersion 
relation derived. Measurements of the Bloch wave dispersion are made, and 
are found to compare well with the theory. 

1.2    Outline of This Work 
The work presented in this dissertation may be divided into four parts: 

(1) linear, time harmonic Bloch wave propagation, (2) linear Bloch wave pulse 
propagation, (3) Bloch wave energy transport, and (4) nonlinear, time harmonic 
Bloch wave propagation. 

Linear, time harmonic Bloch wave propagation is the subject of three 
chapters.   In Chap. 2 we show that for a very broad class of periodic wave- 
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uides, the solutions are Bloch wave functions. The approach taken is to show 
that the Floquet theorem is applicable to a much broader class of problems 
than ordinary differential equations with periodic coefficients. In this way, 
the limitations inherent in modeling the system with an equation such as the 
Webster horn equation (for which the changes in cross-sectional area must be 
gradual) are avoided. The approach also allows us to treat the dissipative case. 
We show that the Bloch wave formalism holds even when the waveguide is 
filled with a viscous, thermally conducting fluid. In Chap. 3 the properties of 
the Bloch waves are investigated both theoretically and experimentally. The- 
oretical expressions for the Bloch dispersion relation and wave functions are 
derived and compared with measurements. It is shown that reciprocity places 
significant constraints on how the forward and backward traveling Bloch waves 
may differ. In Chap. 4 systems with finite sections of periodic waveguide are 
considered. Bloch wave reflection and transmission relations are derived, and 
a general method of solution for such systems is outlined. 

The problem of Bloch wave pulse propagation is addressed in two 
chapters. In Chap. 5 the Bloch wave dispersion integral is derived and its so- 
lutions considered. It is shown that the solution of the Bloch wave dispersion 
integral may be found by application of a recovery operator to the solution 
of a conventional wave dispersion integral. The conventional wave dispersion 
integral is considered in the light of a set of characteristic pulse distortion dis- 
tances. In this way the ranges of validity of several classic and several new 
solutions of the conventional wave dispersion integral are made clear. Novel 
pulse distortion effects such as pulse frequency shifting and pulse acceleration 
are found in the analysis as well as in measurement. In Chap. 6 the asymptotic 
behavior of linear Bloch wave pulses is considered. Owing to the highly char- 
acteristic form of the Bloch dispersion curve, the properties of the pulse may 
be found for a wide variety of initial pulses. 

The problem of energy transport by linear Bloch waves is taken up 
in Chap. 7. Expressions for the intensity, power, and energy density of time- 
harmonic Bloch waves are derived. These expressions are then used to calculate 
the energy transport velocity, and there are found to be two. This apparent 
inconsistency is reconciled by consideration of the difference between mobile 
and stagnant energy and the findings confirmed by measurement of the energy 
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transport velocity. 

Chapter 8 is devoted to nonlinear, time harmonic Bloch wave prop- 
agation. More specifically, the generation of the second harmonic component 
of the distortion field is considered. A discrete Green's function approach to 
the solution is developed and it is found that a forward traveling fundamental 
Bloch wave results in a bidirectional excitation of second harmonic Bloch waves. 
This approach allows us to account for the full Bloch wave representations of 
the fundamental and second harmonic fields. In the approaches used in the past 
these fields have been approximately represented by truncated traveling wave 
spectral series (see Eq. 1.3), an approximation that is valid in the weak disper- 
sion (i.e., nearly uniform waveguide) limit. With the discrete Green's function 
method such approximations are avoided, and the results consequently valid in 
the case of arbitrarily strong dispersion. It is found that the introduction of 
periodicity into a waveguide is a very effective means of disrupting waveform 
distortion caused by nonlinearity. Measurements of the second harmonic am- 
plitude show good agreement with the theory and verify the disruption of the 
nonlinear waveform distortion. 

1.3    The System Under Study 
In this study we consider a very broad class of periodic waveguides. 

While a number of substantial results may be obtained for such a system, the 
results are made much more tangible when they are expressed explicitly for a 
particular system. For this reason, we consider not only the class of periodic 
waveguides but two specific periodic waveguides as well. These two periodic 
waveguides are also those for which the measurements are made. 

1.3.1    The Theoretical System 

The class of periodic waveguides under study is defined as follows. 
The waveguide is a rigid, impenetrable, isothermal tube that is continuous 
(i.e., holes in the waveguide wall are not allowed) and periodic. It is allowed to 
contain an arbitrary periodic array of scattering inclusions, which are similarly 
rigid, impenetrable, and isothermal. The only restriction on the shape of the 
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Figure 1.1: An example of the class of waveguide under study. 
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waveguide is that each cycle must include at least one arbitrarily short section 
of inclusion-free uniform duct, the cross-section of which is arbitrary. The 
waveguide is assumed to be filled with an arbitrary viscous and heat-conducting 
fluid. 

An example of the waveguide is shown in Fig. 1.1. The sections of 
uniform, inclusion-free duct are referred to as "waveguide sections," and the 
intervening sections of deformed and/or inclusion containing duct are referred 
to as "scattering sections" or simply "scatterers." The axial coordinate z is cen- 
tered on a waveguide section and the translated axial coordinate £ = z — h/2 
is centered on a scattering section, where h is the periodicity of the waveguide. 
The length of the scattering sections is / and that of the waveguide sections is 
h—l. A section of the periodic waveguide of length h that is centered on a wave- 
guide section (such as the section —h/2 < z < h/2) is referred to as a "cell." If 
the scatterers are symmetric under reversal of the axial coordinate (£ —► —£), 
then the periodic waveguide itself exhibits the same symmetry. Such wave- 
guides are, for obvious reasons, termed isotropic periodic waveguides. If on the 
other hand the scatterers are asymmetric, then the waveguide has directional 
properties. These waveguides are termed anisotropic periodic waveguides. 

In order to express the results of the analysis as applied to specific 
periodic waveguides, two are considered. One is isotropic and the other is 
anisotropic. These two periodic waveguides are also those in which measure- 
ments are made. Both waveguides consist of a rectangular duct (of transverse 
dimensions axb) that is loaded by a set of rigidly terminated rectangular side 
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Figure 1.2: Two cycles of the isotropic periodic side branch waveguide. Each scatterer is 

composed of a single side branch. 

branches (of transverse dimensions ax I). The side branch or collection of side 
branches that loads each cycle of the waveguide acts as a scatterer. Each cycle 
of the isotropic waveguide is loaded by a single side branch of depth d as shown 

in Fig. 1.2. 

The scatterers are symmetric under axial reversal and the resultant 
waveguide is therefore isotropic. Each cycle of the anisotropic waveguide is 
loaded by a pair of side branches, one of depth d and the other of depth d/2 
(see Fig. 1.3(b)). Each scatterer is therefore composed of an asymmetric pair 
of side branches and is not symmetric under axial reversal. The resultant 
waveguide is therefore anisotropic. The two waveguides are referred to as the 
isotropic and the anisotropic periodic side branch waveguides. 

(a) 
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(b) 
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Figure 1.3: The isotropic (a) and the anisotropic (b) periodic side branch waveguides. 

Below each waveguide is shown a schematic representation to illustrate the locations of the 

scatterers. 
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1.3.2    The Experimental System 
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Figure 1.4:   The isotropic periodic side branch waveguide may be converted into the 
anisotropic waveguide by selectively filling and half filling side branches. 

The measurements are made in the two periodic side branch wave- 
guides described in the last section. Both are made of aluminum and are air 
filled. One is a 48 cycle section of the isotropic periodic waveguide and the 
other is a 16 cycle section of the anisotropic periodic waveguide. Figure 1.4 
shows that the isotropic waveguide may be transformed into the anisotropic 
waveguide simply by selectively filling and half filling the side branches. Owing 
to this transformation, which obviates the need to build two separate wave- 
guides, the isotropic waveguide has, by a factor of three, a greater number of 
cycles than the anisotropic waveguide. The periodic waveguides are driven at 
one end by a compression driver and terminated at the other end, as shown in 
Fig. 1.5. The termination is a length of uniform waveguide that is loaded with 
an anechoic fiberglass wedge. This section of uniform waveguide is rectangular 
and of the same transverse dimensions as the rectangular duct; i.e., it is simply 
a side branch-free extension of the periodic waveguide.   The acoustic pressure 

compression 
driver 

/ 

mic and 
probe tube 

to digitizer      termination 

periodic waveguide 

Figure 1.5: The periodic waveguide system in which the measurements are made. 
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field is measured with a condenser microphone in one of two configurations. 
In the first configuration, the microphone is mounted with its diaphragm flush 
with the inner surface of the waveguide wall. The field is not disturbed and yet 
a measure of the acoustic pressure field at the waveguide wall is obtained. In 
the second configuration, the condenser microphone is connected to the probe 
tube, which is inserted into the volume of the waveguide. Further details of 
the waveguide construction and the measurement techniques are included in 
Appendix E. 



Chapter 2 

The Floquet Theorem and the Time 
Harmonic Bloch Wave Solutions 

In this chapter it is shown that the mathematical system of partial 
differential equations and boundary conditions that describes linear, dissipative 
acoustic wave propagation in the periodic waveguide under consideration is of a 
class that has Bloch wave solutions. In order to show that Bloch wave functions 
are solutions of the system, we show that the Floquet theorem may be applied 
to the mathematical system under the assumption of time-harmonicity. While 
the Floquet theorem is penned so as to apply to a class of ordinary differential 
equations, it is shown here that it is more generally applicable to a system com- 
posed of partial differential equations and boundary conditions provided (1) the 
system is invariant under a translation operation, and (2) the system has two 
linearly independent solutions. It is found that for sufficiently low frequencies, 
the Floquet theorem is indeed applicable to the system and the solutions are 
indeed Bloch wave functions. The Bloch wave functions are determined by an 
eigenvalue problem. In this way we are able to accomplish what we set out to 
prove (that the solutions are Bloch wave functions) and establish a connection 
between our system and those of earlier works in which the Floquet theorem is 
used directly to show that the solutions of a system are Bloch wave functions. 
There are, however, two problems with the approach. First, the proof is valid 
only for low frequencies and, second, the eigenvalue problem that determines 
the Bloch wave functions is prohibitively complicated. For these reasons a sec- 

15 



16 

ond, more fundamental proof of the existence of the Bloch wave solutions is 
presented. While the Bloch wave solutions are again given by an eigenvalue 
problem, it is a much simpler eigenvalue problem. Its simplicity is exploited 
at length in Chapter 3 to determine many of the characteristics of the Bloch 
waves. It is also found that the more fundamental proof may be applied even 
when the frequency restriction is lifted. In such a case the solutions are found 
to be Bloch waves of higher order. 

2.1    The System of Equations and its 
Invariance Under Translation 
The system of linearized equations that describes the dynamics of 

a viscous, heat conducting, homogeneous fluid consists of three conservation 
equations and two constitutive relations. The field variables that appear in 
these equations are P = PQ + p, ü = u, p = po + p, T = To + T, and s = 
s0 + s, which represent pressure, fluid velocity, mass density, temperature, and 
entropy, respectively. The total variable value (denoted by a hat) is expressed 
as the sum of the ambient value (subscripted with a zero) and the acoustic or 
fluctuating value. The linearized equations of conservation of mass, momentum, 
and entropy are (e.g., Pierce, 1981) 

^ + poV-u = 0, (2.1) 

Potr= ~Vp+/iV2u+(/iB+M/3) V(V 'u)' (2,2) 
and
 ds 

p0Toft = KV
2
T, (2.3) 

respectively, where p and /iß are the coefficients of shear and bulk viscosity 
and K is the coefficient of thermal conductivity. The constitutive relations 
are taken to be the two equilibrium thermodynamic relations p = p(P, s) and 
T — T(P, s). Linearized expansions of these relations may be written 



17 

where CQ is the small-signal lossless sound speed, ß is the coefficient of thermal 
expansion, and Cp is the specific heat at constant pressure, all evaluated at the 
ambient condition. Because both the waveguide boundary and any inclusions, 
if present, are assumed to be rigid and isothermal, the boundary conditions are 

u|5 = 0        T\s = 0, (2.6) 

where S is the surface of the waveguide. 

Because the fluid is homogeneous and linear, each of the coefficients 
that multiplies the various differential operators in the system of equations 
(such as po, T0, and K) is a constant. Each of the operators that appears in the 
system is invariant under the set of arbitrary spatial translations 

r —► r + Ar. 

The system of equations is therefore invariant under arbitrary spatial trans- 
lations. The boundary conditions, however, owing to the spatial dependence 
of the surface of evaluation 5, are invariant under the more restricted set of 

translations 
r —► r + nhez, 

where n is an integer and e2 is the axial unit vector. The total system then, 
composed of the system of equations and the boundary conditions, is invariant 
under the set of translations r->r + nhez. It it worth noting that the system 
would exhibit the same invariance if the fluid were periodically inhomogeneous 
with the same periodicity as the waveguide surface. 

2.2    The Global and Local Fields 
We now find an expression for the acoustic pressure field in the wave- 

guide sections. It is shown that the representation of the field may be simplified 
with the identification of what is referred to here as the "global" component of 
the field: that which carries all the pertinent information as to the cell-to-cell 
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structure of the field. The remainder field, the "local" field, may be discarded 
without consequence. We begin with a consideration of the acoustic field in 
the vicinity of a single scatterer in an otherwise uniform waveguide. It is also 
assumed that the fluid is nondissipative. The solution of this simplified system 
leads simply to the solution of the periodic waveguide system. The effect of 
dissipation may then be accounted for. 

In the nondissipative limit, the system of equations may be reduced 
to the classical wave equation in the acoustic pressure. Under the assumption 
of time-harmonic fields, the wave equation becomes the Helmholtz equation 

V2p + k2p = 0, 

where k2 — (U/CQ)
2
. Likewise, in the absence of dissipation the boundary 

condition becomes the standard normal pressure gradient restriction 

Vp-n|s = 0, 

where n is the unit vector normal to the waveguide surface S. The solution 
in the waveguides on either side of the scatterer is composed of incident and 
scattered fields, both of which may be represented as sums over the discrete 
set of allowed waveguide modes. It is assumed that the frequency is below the 
cut-on frequency of the first higher order waveguide mode, and that the fields 
incident upon the scatterer are purely zeroth order. The total field, then, is 
composed of a propagating component (the incident and scattered zeroth order 
waves) and an evanescent component (the scattered higher order modal field), 
which is confined to the near-vicinity of the scatterer. The total solution in the 
waveguides may be expressed 

p(T±,Z) = A0e>kt   +   (SnAo + Sl2Bo)e-jkt 
oo 

n=l 

p(r±,Z) = B0e-M   +   (S21A0 + S22B0)e^ 
oo 

+    £i?n0n(rx)e-|fc-«-'/2)1    f>//2, (2.7) 
n=l 

where A0 and B0 are the pressure amplitudes of the waves incident upon the 
scatterer from £ < 0 and £ > 0, respectively, and the Sij are zeroth order scat- 
tering matrix elements. The transverse mode functions (fin(r±) and wave num- 
bers kxn are the solutions of the transverse component of the uniform waveguide 
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problem; i.e., they are the solutions of the system V5_0n(r_i_) + fc^n0n(rj.) = 0, 
where V'±_4>n • n\ = 0, Vj. = V - ezd/dz, and r = rj_ + zez. The axial wave 
numbers are given by fc2j„ = [(U/CQ)

2
 - k\n)l/2. A schematic representation of 

the field structure is shown in Fig. 2.1. 
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Figure 2.1: The incident and scattered waves in the vicinity of a scatterer. 
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The single-scatterer solution (Eqs. 2.7) may be used to describe the 
field in the vicinity of a scatterer in the periodic waveguide provided the field 
incident upon each scatterer is purely zeroth order. In order for this to be the 
case, the evanescent modes generated at the neighboring scatterers must decay 
to a negligibly small amplitude over the distance h — I. Such a requirement 
leads to the frequency constraint 

^«Co^-C/i-O-2]172- (2.8) 

Under this constraint, the higher order modal fields are confined to the near 
vicinity of each scatterer. They extend some distance into the waveguide on 
either side of the scatterers, but the only extended field is the zeroth order field. 
The evanescent field is simply a localized perturbation to the zeroth order field 
and has no consequence with respect to the global behavior of the system. Such 
a field structure suggests the decomposition of the exact, three-dimensional field 
into global and local components: 

P(r) = Pglobal(z) + Plocal(r), (2.9) 

where pgiobai(^) is the global, purely zeroth order field component and piocai(r) 
is the local, "remainder" field that is significant only in the near-vicinity of 
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the scatterers. By this line of reasoning, we may neglect the local field con- 
tribution and consider only the global field, which carries all the information 
necessary to reconstruct the exact field. Once the global field is determined, the 
local field and therefore the exact, three-dimensional total field is, in principle, 
determined. In the nth cell, the global solution is simply 

PgiobaiW = C^e^ + Cj-V'**        \zn\ < h/2, (2.10) 

where zn = z - nh is a shifted axial coordinate centered on the nthcell. A 
schematic representation of this global field is shown in Fig. 2.2. From this 
point on, a reference to the acoustic pressure field is, unless otherwise stated, 
a reference to the global component of the acoustic pressure field only. 

c(+)eJfc(*+>0 c{,+)ejkz cl+)ejkiz-h) 

<frAAA/-   ^   <HWV-  ^  <-A/W- 

(j(-) e-jk(z+h) g{-)e-jkz £,(-) e-jk(z-h) 

AS-94-723 

Figure 2.2: A schematic representation of the conventional wave structure of a periodic 

waveguide solution. The amplitudes shown are those of the traveling waves at the center of 

each cell. 

In the dissipative case the same line of reasoning may be used to 
justify the use of the zeroth order field alone. That is, under the frequency 
constraint Eq. 2.8, the evanescent higher order modes are simply localized 
perturbations to the zeroth order field and need not be accounted for. In 
fact, the evanescent modes do dissipate some energy and therefore represent an 
energy sink to the zeroth order field, which maintains their level. These losses, 
however, are accounted for intrinsically in the definition of the scattering matrix 

elements. 

The dissipative global solution is given by Eq. 2.10 with the nondis- 
sipative wave number k = U/CQ replaced by the well known (e.g., Pierce, 1981) 
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dissipative wave number 

k = u/co + (l+j) 
V2RU 

1/2 

+ (7-1) 
'K/CJ\ 

1/2 

6J 
1/2 (2.11) 

where i?n is the hydraulic radius (twice the cross-sectional area divided by the 
circumference) of the waveguide sections. This wave number is valid over a 
broad range of frequency in which the so-called u2 or free field thermoviscous 
losses are negligible compared to the u1/2 or thermoviscous acoustic boundary 
layer losses. 

2.3    The Linearly Independent Solutions 
We now present a very general form of the solution of the system. 

The system has, by way of a frequency constraint (Eq. 2.8) and the global/local 
field decomposition (Eq. 2.9), effectively been reduced to an infinite sequence of 
coupled one-dimensional wave cells of length h. It is seen in Eq. 2.10 that each 
cell has two linearly independent solutions, but what of the system of coupled 
cells? It is easily shown using a T-matrix (transmission matrix) approach that 
the entire system has two linearly independent solutions as well. 

While the 5-matrix relates the scattered field to the incident field in 
the vicinity of a scatterer, the T-matrix relates the fields on either side of the 
scatterer (these matrices are defined in Appendix B). The zeroth order wave 
amplitudes in the centers of the nth and the (n + l)th cells are related by the 
transmission relation 

r(+) 
C{~) 

1 

£21 

-\S\e*h 

Sn 
S< 22 
-jkh = TC (2.12) 

where \S\ is the determinant of the scattering matrix and Tc is the T-matrix 
associated with transmission across the cell. Given the two traveling wave 
amplitudes in the nth cell, we are able to derive the traveling wave amplitudes 
in any other cell of the structure by repeated application of Eq. 2.12 or its 
inverse. The wave function of the entire system may therefore be expressed in 
terms of only the two constants C£+) and C^~\ These two constants are the 
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two arbitrary constants associated with the general solution to a system that 
has two linearly independent solutions. 

A very general pair of linearly independent solutions may be defined 
in the nth cell as 

Fx(z) = Ci+Vfcs» + C^e-'**» 

F2(z) = Dp>e?kz» + ßl-'e*. (2.13) 

Outside of the nth cell, the constants C(+), C(_), D(+), and L><_) may be found 
by repeated applications of the transmission matrix (Eq. 2.12) or its inverse. 
The Wronskian of Fi(z) and F2{z) is 

W(z) = 2jk [ctW» ~ C(
n
+)D^} , 

which is constant in any cell and is nonzero if 

C<f >/Cl+) * DP/DP- 

In other words, Fi(z) and F2(z) are linearly independent as long as they are 
not the same function. 

2.4    The Floquet Theorem and the Associated 
Eigenvalue Problem 
In this section the Floquet theorem is applied to show that the solu- 

tions of the system are Bloch wave functions. As it appears in the literature, 
the Floquet theorem applies only to ordinary differential equations (e.g., Ince, 
1956), and may not be applied directly to our partial differential system. It is 
shown here, however, that because (1) the system exhibits an invariance under 
the set of translation operations r —► r + nhez, and (2) there are two linearly 
independent solutions of the system, the Floquet theorem may indeed be ap- 
plied to the system. As a result, the solutions are shown to be Bloch wave 
functions. 

Consider the arbitrary pair of linearly independent solution functions 
defined in Eq. 2.13. An arbitrary solution function must be expressible as 
a linear superposition of Fx(z) and F2(z) as these functions form a linearly 
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independent basis. Because the system is invariant under axial translations 
of h, the functions Fx(z + h) and F2(z + h) must also be solutions and must 
therefore be expressible in terms of the basis: 

Fr(z + h) = JnFiiz) + JnF2(z) 

F2(z + h) = J2iFx(z) + J22F2(z), (2.14) 

\F(z + h)) = J\F(z)), (2.15) 
or, equivalently, 

where 

\F{*)) = 
Fx{z) 
F2(z) 

is the basis vector1 and J is the matrix composed of the constants Jij. 

Note that, in general, the basis \F(z)) is such that upon translation 
(i.e., propagation), the basis wave functions "mix". That is, in order to express 
the translated solution wave function Ft (z + h) we must use both Ft (z) and 
F2{z). We now look for a particular pair of basis functions that exhibit an 
independence (i.e., do not "mix") under the translation operation. In other 
words, we seek a basis for which Ji2 = J2X = 0, in which case we have a pair of 
traveling wave type solutions that diagonalize the translation operation. The 
elements of the basis we seek have the property 

TT{z) = T(z + h) = sT(z), (2.16) 

which we recognize as the eigenvalue problem associated with T, the unit cell 
translation operator. 

Because F(z) is a solution of the system, it may be expressed as a 
linear combination of the basis wave functions: 

T(z) = ß1F1(z) + ß2F2(z) = (ß\F(z)). 

lrThe so-called bracket linear algebraic notation, in which |) denotes a column vector and 
(•| denotes a row vector, is described in the book by Arfken (1985). 
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The shifted function r(* + h) may therefore be expressed 

T(z + h) = ßiFtiz + h)+ ß2F2(z + h) = (ß\F(z + h)). (2.17) 

With the introduction of Eq. 2.15, Eq. 2.17 may be written 

T(z + h) = (ß\J\F(z)). 

The eigenvalue problem (Eq. 2.16) therefore becomes (ß\3\F(z)) = s(ß\F(z)), 

or equivalently 
JT|/3) = s\ß), (2.18) 

where the superscript T denotes the transpose. Note that Eq. 2.18 is the state 
vector representation of the eigenvalue problem associated with the translation 
operator T, where the state is denned in terms of the basis \F(z)). The solution 
eigenvectors, here labeled \ß{±)), yield the eigenfunctions 

F^(z) = (ß^\F(z)) 

and the associated eigenvalues yield the desired independent or "non-mixing" 
translation property of the eigenfunctions 

F^(z + h) = s^F^\z). (2.19) 

Equation 2.19 is a statement of the essential result of the Floquet the- 
orem: that there does indeed exist a pair of basis wave functions that exhibit 
the desired independence under translation. Equation 2.18 is the eigenvalue 
problem that generates the wave functions, the eigenfunctions F(±)(z), which 
are the Bloch wave functions. The Bloch wave functions are simply a partic- 
ularly judicious choice of linearly independent solution functions in terms of 
which we may express other solutions. We will see, however, that it is not 
always straightforward to determine which of the solution functions is the for- 
ward traveling Bloch wave function F^+)(z) and which is the backward traveling 

Bloch wave function F^~\z). 
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2.5    The Underlying Eigenvalue Problem 
While the eigenvalue problem associated with the Floquet theorem 

leads us to the desired result (a translationally independent basis), there is an 
underlying eigenvalue problem that carries the same information as Eq. 2.18 
but is much more fundamental. This "nested" eigenvalue problem is found by 
taking the same steps as in the last section, but with the basis functions \F(z)) 
expressed in terms of the exponential functions that were used to define them 
(see Eq. 2.13). Equation 2.13 may be expressed 

Ffc) = (Cn\e(z)) F2(z) = (Dn\e(z)), 

where \Cn) = [C«  C^f, \Dn) = [D<+>  D^)T, and 

Hz)) = 
e+jkz„ 

e~jkzn 

As before, we express the solution function T(z) in terms of the basis \F(z)), 
which we in turn express in terms of the exponential "basis" functions2: 

T(z) = (ß\F(z)) 

= ßtiCnleiz)) + fo(Dn\e(z)) 

= (<7n|e(z)), 

where 
k„> = ßi\Cn) + ß2\Dn) = [\Cn)\Dn)]\ß) 

is a vector composed of the traveling wave amplitudes at the center of the 
nth cell. The shifted function T(z + h) may also be expressed in terms of the 
exponential functions: 

T(z + h) = {ß\F(z 4- h)) 

= ßi(Cn+l\e(*)) + ß2(Dn+i\e(z)) 

= (an+l\e(z)). (2.20) 

2The exponential functions do not form a basis in the true sense as they are not solutions 
of the system. 
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Prom Eq. 2.12 we have |Cn+1) = Tc|Cn) and \Dn+l) = Tc\Dn), and Eq. 2.20 

may be written 
r(z + h) = (an\(Tc)T\e(z)). 

The eigenvalue problem (Eq. 2.16) therefore becomes 

Tc\an) = s\an). (2.21) 

The resultant eigenvectors yield the eigenfunctions (the Bloch wave functions) 

F(±){z) = {a(±)\e(z)) (2.22) 

and the eigenvalues s(±) yield the translation relations as shown in Eq. 2.19. 

The exponential basis approach has considerable advantages over the 
standard Floquet approach. While both methods result in the same eigen- 
functions and translation relations, the eigenvalue problem found in terms of 
the exponential basis is much more fundamental than the other, a fact that is 
exploited at length in Chapter 3 to determine the characteristics of the Bloch 
wave functions for various waveguide geometries. The difference between the 
two approaches lies in the translation operator. In the \F(z)) basis, the trans- 
lation operator J is specific to whichever particular basis is chosen. We first 
choose a particular Fi(z) and F2{z) (i.e., choose complex values for C{+\ C^, 
D(+\ and D^). Equation 2.14 may then be inverted (using Eqs. 2.12 and 

2.13) to solve for the elements of J: 

J = 
l|C„>|D„>| 

-<Dn|s2|T
c|Cn) 

-(Dn\s2\Tc\Dn) 
(Cn|s2|T

c|Cn> 
<Cn|s2|T

c|D„) 

where s2, defined as 

s2 = 
0   -j 
j    o 

is the second Pauli spin matrix (e.g., Arfken, 1985). The eigenvalue problem 
(Eq. 2.18) may then be solved and the Bloch wave functions found. In the 
\e(z)) basis, the translation operator is Tc, which has no dependence on which 
particular functions F^z) and F2{z) we started with. The operator Tc is a 
fundamental characterization of the scatterers dependent only upon the wave- 
guide geometry. The cell T-matrix eigenvalue problem is therefore a much more 

fundamental statement of the problem. 
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2.6    Higher Order Bloch Wave Modes 
Up to this point we have worked under the frequency restriction 

(Eq. 2.8) that ensures that only one mode is significant after propagation over 
the distance between scatterers. In other words, it has been assumed that the 
global field is composed only of the zeroth order waveguide mode. It is now 
shown that this assumption, which was made in order to simplify the derivation, 
need not have been made. The exponential basis version of the Floquet theo- 
rem may be extended and used to show that in the arbitrary frequency case, 
in which an arbitrary number of waveguide modes are cut on, the solutions are 
still Bloch wave functions. 

We consider the case in which m modes are significant after prop- 
agation through a waveguide section. The frequency constraint for this case 
is 

^«^L-(^-r2]1/2> 
where k±m is the transverse wave number associated with the mth mode. It 
may be the case that all m modes are cuton or that some are evanescent yet 
significant. The global solution in the nth cell is now composed of m forward 
and m backward traveling wave modes, and may be expressed 

m-l 

i=0 

where n is the cell number associated with r and (f>i(r±) is the transverse field 
function associated with the ith mode. The system now has 2m linearly inde- 
pendent solution functions, the Ith of which may be expressed 

m-l 

i=0 

The calculation of the Wronskian of this set of solution functions (holding rj_ 
constant) indeed shows that they are linearly independent as long as no two 
of the functions are related by a multiplicative constant. Extending the earlier 
approach, we define the state vector as 

\r   \ — [W0+)   M°-) W">-i+)   n{m-i-) 
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and set of exponential basis functions 

|e(r)> = [(JkoZn   e-jkoZ"    ■■■   cj>m-i(r±)ejkm-lZn   (pm-i(r±)e-jkm-lZn 

In this notation, we have by definition 

Fi(r) = (Cni/|e(r)) 

and 
Fj(r + ^) = (Cn+f,j|e(r)>. 

The set of basis functions are defined 

|F(r)) = [^(r)   ...   F2m(r)f, 

and the 2m x 2m translation matrix is such that 

|Cn+M)=Tc|Cnii). 

We may now proceed as in the m = 1 case. An arbitrary solution 
and the arbitrary solution translated by a period are T(r) = (crn|e(r)) and 
T(r + hez) = (<rn+i|e(r)), where \crn+i) = Tc|o-„). We again look for solutions 
with the translational independence T(r + hez) = sr(r), which again leads to 
the eigenvalue problem 

Tc\an) = s\an). 

The eigenvalue problem is now a 2m x 2m problem, resulting in m forward 
traveling and m backward traveling Bloch wave modes. As the transverse di- 
mensions of the waveguide become large (compared to a free-space wavelength) 
or the waveguide sections become short (compared to the largest characteris- 
tic evanescent mode decay length), the value of m increases and the problem 
becomes more difficult. From this point on, only the m = 1 case is considered. 



Chapter 3 

The Eigenvalue Problem and the 
Bloch Wave Functions 

In this chapter we investigate the properties of time harmonic Bloch 
waves. The structure of these Bloch waves is determined by the eigenvalues 
s^ and the eigenvectors \&^) of the eigenvalue problem 

Tc\an) = s\an). 

It turns out that we may learn a great deal about the properties of Bloch waves 
simply by consideration of the properties of the eigenvalue problem. That is, 
information about many of the interesting properties of the Bloch waves, such 
as the band structure of the Bloch dispersion relation, may be deduced by 
direct investigation of the general eigenvalue problem. The findings are valid 
for any periodic waveguide that is of the very general class described in the 
introduction.1 

We begin by making some observations as to the general structure 
of the Bloch waves and the roles of the eigenvalues and eigenvectors in the 
determination of that structure. We then look at the equations that determine 

xWhile this approach is very powerful (we are able to gain a great deal of information 
about a very general system), it is also somewhat abstract. An earlier publication of the 
author's (Bradley, 1991) contains a very different, less general, more explicit, and therefore 
more digestable treatment of the problem. 

29 
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sW(w) and \<r^(u)) to investigate the banded structure of these functions 
of frequency. The forward and backward traveling Bloch wave functions are 
compared and their similarities and differences noted. The multivaluedness 
of the Bloch wave number and the difficulties it causes in the identification 
of propagation direction is discussed. Finally, a new functional representation 
of the Bloch wave function is presented. This representation turns out to 
be valuable in much of the subsequent work, particularly that presented in 
Chapter 8 on nonlinear Bloch wave propagation. 

3.1    The General Structure of the Bloch Waves 
It will soon become evident that the Bloch wave functions, which 

we have shown are themselves composed of collections of conventional waves, 
exhibit distinctly wave-like behavior. For this reason it is appropriate (as well 
as traditional) to use the alternative expression for the eigenvalues 

s(±) _ eJ?(±)/») 

where g(±) is the (generally complex) Bloch wave number. Given such a defiV 
nition, the translation relation (Eq. 2.19) 

appears more explicitly as a propagation relation. The solution of the eigenvalue 
problem results in (1) s(±)M, from which we find g(±)(w), the Bloch wave 
dispersion relation, and (2) la^fa)), which carries the information as to the 
conventional wave makeup of the Bloch wave functions. 

Surprisingly, prior to the actual solution of the eigenvalue problem, 
several substantial observations about the qualitative nature of the solution 
functions may be made. Equation 2.22 shows that the Bloch wave functions 
are composed of collections of conventional waves. The components of \an) 
are simply the amplitudes of these component waves in the nth cell. The state 
vector eigenvalue problem (Eq. 2.21) may be written 

T°|aW> = kit\) 
= e>*±)h\aM). (3.1) 



31 

We see that the component wave amplitudes in the n + 1th cell are identical 
to those in the nth cell up to a factor of e"(±)\ The factor ejq{±)h represents a 
shift in phase (and a magnitude adjustment if <?(±) is complex) of the pair of 
component waves. The relative amplitude of the component waves, however, is 
constant in all cells of the structure. This is most clearly shown by combining 
Eqs. 2.22 and 3.1 to express the Bloch wave function as 

F(±)(^) = (4±)|e(^))e
jW±)h, (3.2) 

where, again, n is the cell number associated with z. The Bloch wave is sim- 
ply composed of a string of essentially identical compound wave fields. The 
eigenvalue s(±) (or equivalently, <7(±)) accounts for the cell-to-cell structure or 
macrostructure of the Bloch waves, and the eigenvector |<TQ 

}) accounts for the 
structure within the cell, the micro structure of the Bloch waves. It may be 
anticipated at this point that a parameter that characterizes the (complex) rel- 
ative amplitude of the component waves will serve as a useful characterization 

of the Bloch wave microstructure. 

3.2    The Eigenvalues and Bloch Wave 
Dispersion 
In this section we consider the eigenvalues of Eq. 2.21 and the char- 

acteristics of the resultant Bloch dispersion relation. Various features of the 
banded structure of the dispersion relation are derived directly from the eigen- 
value problem. In addition to the usual Bragg stopbands, a new species of 
stopband associated with resonance of the scatterer is identified. Measurements 
of Bloch wave dispersion made in both isotropic and anisotropic periodic side 
branch waveguides is found to verify the theoretical findings. 

3.2.1     The Bloch Dispersion Relation 

To find an expression for the Bloch wave numbers (i.e., a Bloch dis- 
persion relation), the characteristic equation for the eigenvalues must be solved: 

= s2-s(T?l+T?2) + \Tc\ = 0. (3.3) Ml Ä M2 
l1\ J22       6 
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The two solutions s(+) and s(_) of the quadratic characteristic equation are the 
eigenvalues associated with Fi+)(z) and F(_)(*), respectively. If it is assumed 
that s(+) is a solution, then it follows that s(_) = |Tc|/s(+) is the second 
solution. According to the principle of reciprocity, however, \T°\ = 1 (see 
Appendix B), and the two eigenvalues are s(+) and s(_) = l/s(+). The Bloch 
wave numbers, therefore, are simply q{+) and ?(_) = -qi+) + 2irm/h, where m 
is an integer. We now define q = g-(+) and the translation relations become2 

F&\z + h) = e±iqhF<±\z). (3.4) 

We see that the two Bloch wave functions have the form of a forward and 
a backward traveling wave, both of (generally complex) spatial frequency q. 
In other words, reciprocity disallows birefringence.3 Although the system is 
generally anisotropic as the scatterers are generally asymmetric, in terms of q, 
the Bloch wave functions are symmetric. The advance in phase and decrease in 
amplitude that occurs in the +z direction for the (+) Bloch wave is identical to 
those that occur in the -z dirction for the (-) Bloch wave. In other words, in 
terms of the macrostructure, the forward and backward traveling Bloch waves 

are identical. 

The usual form of the Bloch dispersion relation is found by first rewrit- 
ing the characteristic equation as s + 1/s = Tß + Tg, and then substituting 

ejqh for s to find 
cos(qh) = -(T°+Tg). (3.5) 

This is the Bloch dispersion relation. Recall that the elements of Tc are asso- 
ciated with propagation across the entire cell and not just past the scatterer. 
The elements of Tc (and therefore q) will therefore depend upon frequency in 
two distinct ways: (1) through waveguide propagation factors containing k(u), 
and (2) through the frequency dependence of the scatterer.  The Bloch wave 

2Note that we have made no decision yet as to which of the two values of q is to be called 
q(+) and which is to be called q(~\ 

3In a one-dimensional birefringent wave system, the wave numbers for the forward and 
backward traveling waves are not related simply by k^ = -fc(+\ as they are for most wave 
systems (e.g., Jackson, 1975). 



33 

number therefore has both a direct and a nested dependence upon frequency: 
q = q[k(u),uj]. 

The structure of the dispersion relation is most simply investigated by 
the consideration of a nondissipative system. In such a case we have T2^ = Tp* 
(see Appendix B), and the Bloch dispersion relation becomes simply 

cos(qh) = Re{7?j} = 7(0;). (3.6) 

Because Eq. 3.6 is real, the inverse cosine function involved in the evaluation 
of q may be broken into parts: 

ne7r±-7'cosh_1(7) 7 > 1 
qh=\  ±cos-1(7) -1<7<1   , (3.7) 

n07r ± jcosh_1(|7|)       7 < —1 

where ne and na are even and odd integers, respectively. The multivaluedness 
of q is addressed later; the point of interest here is that for IRefT^}! < 1, q 
is real and for IRelT^}! > 1 q is complex. The spectral regions in which q is 
real are associated with propagating Bloch waves and are known as passbands. 
The intervening spectral regions, in which q is complex, are associated with 
exponentially attenuated Bloch waves and are referred to as stopbands. 

A great deal may be learned about the band structure of the dis- 
persion relation by considering the case wherein the scattering is caused by a 
reactive shunt load of acoustic impedance jXia in an otherwise uniform wave- 
guide of acoustic impedance Z0a = poCo/Avg, where Awg is the cross-sectional 
area of the waveguide. In such a case, T^ = (1 + \j ZQ&/X^e^ and the Bloch 
dispersion relation becomes 

1 7 
cos(qh) = cos(kh) —^- sin(kh). (3.8) 

2 A La 

In this form we see that there are two conditions under which a stopband is 
likely occur: 

• When the frequency is such that kh ~ wn. Because cos(n7r) = (—1)", the 
magnitude of the right-hand side of Eq. 3.8 is likely to exceed unity, which 
is the stopband condition. As this set of frequencies are those that satisfy 
the Bragg condition, these stopbands are referred to as Bragg stopbands, 
the nth of which is called the "rm" stopband. 
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• When the frequency is at or near a resonance frequency of the load. In 
such a case the load reactance goes to zero and the magnitude of the right- 
hand side of Eq. 3.8 exceeds unity, causing a stopband. These stopbands 
are referred to here as scatterer resonance stopbands. 

In the Bragg stopbands, the magnitude of the right-hand side of Eq. 3.8 exceeds 
unity but does not change signs. It therefore follows (see Eq. 3.7) that the 
following are characteristic of Bragg stopbands: 

Re{qh} = constant = nit and |Im{g/i}| > 0     (but finite). 

In the scatterer resonance stopbands, the right-hand side of Eq. 3.8 diverges to 
infinity and flips sign at u = uIt the scatterer resonance frequency. It therefore 
follows (see Eq. 3.7) that it is characteristic of scatterer resonance stopbands 
that Re{qh} is discontinuous at the resonance frequency: 

lim Re{qh} = ne7r and lim_ Re{qh} = n0n 

or 
lim Re{qh} — n0ir and lim_ Re{qh} = neir, 

where ne is an even integer, n0 is an odd integer, and the limit lim^^i denotes 
the approach to the resonance frequency from the ± side. It also follows that, 
at the scatterer resonance frequency, 

lim |Im{o/i}| —► oo. 

In the dissipative case the right-hand side of Eq. 3.5, and therefore q as 
well, is generally complex at all frequencies. In other words, the imaginary part 
of the Bloch wave number becomes, owing to the effects of dissipation, nonzero 
in the passbands as well as in the stopbands. Unless the dissipation is very 
large, such as when the characteristic length associated with dissipation in the 
uniform waveguide is small compared to the structure periodicity (1/Im{fc} <C 
h), the band structure is evident in the dispersion. 
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3.2.2    The Periodic side branch Waveguides 

The Bloch dispersion relation for a particular periodic waveguide is 
found by substituting the expressions for the elements of the cell T-matrix into 
Eq. 3.5. The cell T-matrix elements associated with scattering by a side branch 
are derived in Appendix D (see Eq. D.2). The substitution of these expressions 
into Eq. 3.5 yields 

Au 
cos(qh) = cos(kh) —     s    tan(/csbG0 sin(kh), (3.9) 

2A wg 

where ksb is the wave number associated with the waves in the side branch and 
d is the end-corrected side branch depth (see Appendix D). Equation 3.9 is the 
Bloch dispersion relation for the isotropic periodic side branch waveguide. In 
Fig. 3.1 is shown a plot of this Bloch dispersion relation for the nondissipative 
case. As predicted, Bragg stopbands occur at uh/co = n and UH/CQ = 2n 
and a scatterer resonance stopband occurs at the resonance frequency of the 
side branch, as indicated in the column on the right margin of the figure. In 
addition, it is clear that the real part of q is discontinuous and the imaginary 
part of q singular at the resonance frequency of the scatterer. Also included in 
Fig. 3.1 is the dispersion curve for the dissipative case. As might be expected, 
the dissipation tends to smooth out the sharply cusped features that occur at 
the boundaries of the stopbands and at the scatterer resonance frequency. The 
real part of q is no longer discontinuous and the imaginary part of q is no longer 
singular at the scatterer resonance frequency. 

The measurement of the Bloch wave dispersion for the isotropic peri- 
odic side branch waveguide is outlined as follows. The real part of q is measured 
by monitoring the phase of the Bloch wave (at the cell centers) as a function of 
distance, and the imaginary part of q is measured by monitoring the amplitude 
(also at the cell centers) as a function of distance. Recall that the Bloch wave, 
when sampled only at intervals of h, is indistinguishable from a conventional 
wave of wave number q. As is true of conventional waves, therefore, the rate of 
increase of phase with distance is Re{qr}, and the rate of decrease of the (log) 
amplitude with distance is lm{q}. The amplitude and phase of the acoustic 
pressure field was detected at 22 cell centers along the waveguide for 455 fre- 
quencies between 200 Hz and 4.0 kHz. The rate of increase of the phase and 
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the rate of decrease of the (log) amplitude were found by performing linear 
regressions of the set of field measurements for each frequency. The details of 
the measurements are discussed in Appendix E. 

Figures 3.2 and 3.3 show the experimental values of the Bloch wave 
number for the isotropic periodic waveguide as compared to values from the 
dissipative theory. Both the real and imaginary parts of the Bloch wave number 
show very good agreement with the theory. The features of the ir and 2n 
Bragg stopbands and the first scatterer resonance stopband are clearly evident 
in the measurements. The predicted characteristics of the scatterer resonance 
stopband, most notably the sharply spiked lm{q} and the nearly discontinuous 
Re{<?}, are verified. Figure 3.4 shows the theoretical and experimental values of 
the imaginary part of the Bloch wave number on an expanded scale. That the 
dissipative theory predicts the nonzero passband value of the attenuation very 
well serves to support the theoretical postulate that the Bloch wave formalism 
holds in the presence of dissipation. The nondissipative theory, on the other 

hand, predicts zero passband attenuation. 

While the dispersion measurement in the isotropic periodic side branch 
waveguide consisted of the measurement of only a single Bloch wave num- 
ber, in the anisotropic waveguide we must measure two (both <?(+) and q^). 
In this way we are able to experimentally verify the theoretical finding that 
q>(_) = — g(+). We must therefore measure the dispersion in the waveguide with 
one orientation, and then repeat the measurement with the waveguide reversed. 
The details of this measurement are outlined in Appendix E. 

The measured values of the wave numbers for both the forward and 
the backward traveling Bloch waves in the anisotropic periodic waveguide are 
shown in Fig. 3.5. Included in the plots are the values from the dissipative 
theory. It should be noted that we have plotted -<7(_) instead of g(_) for the 
sake of comparison with q(+K The agreement between theory and experiment 
is quite good except at the high frequency end of the measurement range, 
where the theoretical and experimental curves diverge. It is believed that the 
divergence is due to our inability to accurately predict the frequencies of the 
scatterer resonance stopbands. A scatterer resonance stopband is predicted 
to occur at a frequency near 2.0 kHz, just beyond the high frequency end 
of the range of measurements shown in Fig. 3.5.   The measurements show 
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marked increases in both the real and the imaginary parts of the Bloch wave 
number as the frequency approaches 2.0 kHz, where the theory predicts more 
gradual increases. Evidently, the theory predicts the frequency of occurence 
of the scatterer resonance stopband to be higher than what the measurements 
indicate. This may be due to the use of the circular tube end correction to 
approximate the effective depth of the side branches (see Appendix D). 

Although the agreement between the theoretical and the measured 
values of the Bloch wave number is not as good as it is for the isotropic wave- 
guide, it appears quite conclusively that the measured values of q^ and -^(_) 

are equal. Figure 3.6, which shows the data from Fig. 3.5 on a scale expanded 
about the 3n stopband, serves to support this conclusion. The measurements 
therefore support the theoretical prediction that, even for an anisotropic wave- 
guide, the forward and backward traveling Bloch wave numbers are related by 
g(-) = -Q(+). 

3.3    The Eigenvectors and the Component 
Wave Structure of the Bloch Waves 
In this section we consider the eigenvectors of Eq. 2.21 and the char- 

acteristics of the resultant conventional wave structure of the Bloch waves. 
As in the case of the Bloch dispersion relation, various features of the com- 
ponent wave structure may be derived directly from the eigenvalue problem. 
Measurements of the component wave amplitudes made in both isotropic and 
anisotropic periodic waveguides are shown and found to verify the theoretical 
findings. 

3.3.1    The Bloch Wave Parameter g/f 

It was pointed out earlier that the eigenvectors are the source of in- 
formation as to the conventional wave makeup of the Bloch wave function. 
Because the relative amplitude of the component waves is identical in each cell 
of the structure (see Eq. 3.2), we need only find the eigenvector associated with 
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a single cell. The eigenvalue problem for the zeroth cell is 

rpC 
J12 

T22 — s 
001 

002 

0 
0 

where    \OQ) = 0oi 

002 
(3.10) 

Because the eigenvector has two components it is simply characterized, up to 

an arbitrary constant, by the ratio 002/001- From E(l- 3-10 we find that the 

equation that determines 002/001 maY be written 

T1
c

2(o02/o01)
2 + (TS - T2

c
2)(o02/ooi) - 7S = 0. (3.11) 

Equation 3.11 characterizes the eigenvectors and therefore the conventional 
wave structure of the Bloch wave. For this reason Eq. 3.11 is referred to as the 
microstructure equation (see the discussion following Eq. 3.2). 

We may now proceed as we did in the investigation of the properties 
of the Bloch wave numbers. The two solutions of the quadratic microstructure 
equation are labeled (o02/ooi)(+) and (oo2/ooi)(_)- One substantial relationship 
between these two solutions may be found right away. If it is found that 

(002/001)^ *s one solution, then it follows that 

-1 
(002/001)^ 

-) _ 
(-^2/^X002/001) 

(+) (3.12) 

is the second solution. 

As in the case of the Bloch wave dispersion, it is most straightforward 

to further investigate the characteristics of 002/001 by consideration of the 
nondissipative case. In the absence of dissipation we have lfx = Tp2* and 

^22 = Tn   (see Appendix B), and Eq. 3.11 becomes 

T1
c

2(oO2/0o1)
2 + 2jIm{T1

c
1}(f7O2/0o1) - T% = 0. 

The two solutions of this equation are simply 

002/001   = 
(±)      -jIm{7fi}Tf|7f2|

2-Im{Tg}2 
1/2 

n (3.13) 
12 

The reasoning behind the choice of labels is made clear in Sec. 3.4.   It was 
pointed out in the discussion that follows Eq. 3.7 that the condition for the 
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occurrence of a stopband is IRefTfJI > 1. Prom the conservation of energy we 
have Re{T£}2 - 1 = \T&\2 - Im{T£}2 (see Appendix B), and the stopband 
condition may be expressed \Tg\2 - Im{T^}2 > 0. In the stopbands, there- 
fore, the argument of the square root in Eq. 3.13 is positive and real, and the 
magnitude of that equation becomes simply 

iW'Sfi = !■ (3-14) 
In the passbands, the argument of the square root is negative and real, and the 

magnitude of Eq. 3.13 is 

F02/^01  I — —j^cj 1*1- 
\Tgf 1/2 

(3.15) 
lm{TZ}*) 

From the stopband condition, we have 0 < |Twl/lImWi}l ^ 1> and therefore 

^('-Ä)^1 (3'16) 

in the passbands.   From Eq. 3.15 and the passband condition (Eq. 3.16), it 
follows that in the passbands 

\^/a^\>\ and |W4t}| < 1- (3-17) 

Note that the labeling is such that energy is transported in the +z direction 
by the (+) Bloch wave and in the —z direction by the (-) Bloch wave. 

Another passband relationship between 002/001   and 002/001   may be 
found by consideration of Eq. 3.13. In the passband we have 

/(±)      -3lm{T^}^j[lm{T^-\Tg\2]112 

002/001   = ~^Fc ' (3-18) 

where the argument of the square root is real and positive. Using the relations 

<jo2/cr07) = [-C^/T^J^/CTO^]
-1

 (fr°m the discussion following Eq. 3.11) and 
T21 = Tf2* (from Appendix B), we find 

(702/4r) = — T7Ö- (3-19) 
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The multiplication of the (+) case of Eq. 3.18 and the complex conjugate of 
Eq. 3.19 verifies that 

[w^fitW'fc*] = i- (3-2°) 
In order to simplify comparisons between the two Bloch wave func- 

tions, we redefine the components of the eigenvectors: 

i4+)> 
gM 

(-)\- k~o 9" (3.21) 

From Eqs. 3.2 and 3.4, the Bloch wave functions are then 

F(±)(z) = (f(±)e±Jk(z-nh) _|_ Q(±)e^jK'-nh)\e±jnqh (3.22) 

where n is the cell number associated with z. A schematic representation of 
the two Bloch waves in terms of their component wave makeup is shown in 
Fig. 3.7. The component wave that travels in the direction of propagation of 
the Bloch wave is here termed the "/-wave" and the other the "g-wave". Given 
these definitions, we have the relations 

9/f(+) = am/crtf      and     g/f^ = [W^]-1, (3-23) 

which, together with Eq. 3.12, lead to the relation 

(<?//)(-} = {-T?2/Tg){g/f)^    . (3.24) 

The /-wave/^-wave makeup is different for the two Bloch waves. Recall that 
in terms of q, which accounts for the cell-to-cell or macrostructure of the Bloch 
waves, the Bloch waves are symmetric. Here, however, we see that in terms 
of g/f, which accounts for the Bloch wave structure within the cell, the Bloch 
waves are generally asymmetric: g/f^ ^ g/f^- The macrostructure of the 
Bloch waves is symmetric yet the microstructure is generally asymmetric. Note 
that if the waveguide is isotropic, then —T^/T^ = 1 (see Appendix B) and we 
have g/f(~~* = g/f^'- the two Bloch waves are simply reversed copies of one 
another, as they must be due to the axial reversal invariance of the waveguide. 
In the absence of dissipation we have T^J* = Tp2 (see Appendix B), from which 
it follows that \g/f^\ = \g/f^\ (see Eq. 3.24). In terms of the magnitude of 
g/f, the Bloch waves are symmetric. The phase of g/f, however, is generally 
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different for the two Bloch waves. In other words, the Bloch wave asymmetry 
is manifest primarily in the phase of the microstructure. It is possible, in the 
dissipative case, that there be a degree of asymmetry in the magnitude of the 
microstructure, but generally very little. 

The passband/stopband characteristics of g/f{±) may be found by 
consideration of those found for OOI/GQI . From Eqs. 3.14, 3.24 and the fact 
that T£I* = Tf2 (see Appendix B), it is found that in the stopbands 

|0//(±)I = 1. 

In the stopbands, the / and g waves have equal magnitude; there is a resonant, 
standing wave condition and no net energy is transported. From Eqs. 3.17, 3.24 
and the fact that T^* = Tf2 (see Appendix B), it is found that in the passbands 

\g/f(±)\<i- 

In the passbands the amplitude of the /-wave is larger than that of the g- 
wave. The component wave of larger amplitude propagates in the direction of 
propagation of the Bloch wave. It therefore follows that at passband frequencies 
energy is transported in the direction of propagation of the Bloch wave, as we 
might expect. The relation Eq. 3.20 also implies that in the passband 

g/f{-] = g/f{+h- (3.25) 
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As was already pointed out, if the waveguide is isotropic as well as nondissi- 

pative, then 5//
(_) = s//(+)> and EQ- 3-25 imPlies Im{^//(±)} = °- In other 

words, for an isotropic waveguide, we have the passband condition 

/.g/f = rm, 

where Z denotes the phase. 

3.3.2    The Periodic Side Branch Waveguides 

In principle, an expression for g/f for a particular periodic waveguide 

is found by substituting the expressions for the elements of the cell T-matrix 
into Eq. 3.11, solving that quadratic and, by way of Eq. 3.23, converting the 
resultant expression for a02/cro\ into an expression for g/f. In practice, however, 
it is frequently less work to obtain the values of g/f from the expression for 
the Bloch acoustic impedance (see Sec. 4.1). The Bloch acoustic impedance, 
which is simply the acoustic impedance at the cell centers, may be found from 
Eq. 4.2. Equation 4.1 may be inverted to find an expression for g/f in terms 
of the Bloch acoustic impedance, for which we have an explicit expression. For 
the isotropic periodic side branch waveguide, for example, this approach yields 
an explicit expression for g/f: 

g/f = -(A;b/;4wg)tan(A;sbcO[cos(/c/i) - 1] +sm(kh) 

-(Ash/Awg) taj\(kshd)[cos(kh) 4-1] + sin(kh) 

-(Ash/Awg) tan(ks\>d)[cos(kh) - 1] + sm(kh) 

+ (Ash/Awg) ta,n(ksbd)[cos(kh) + 1] + sm(kh) 

1/2 

1/2' 

1/2 

1/2' 
(3.26) 

For the anisotropic periodic side branch waveguide, however, values of g/f^ 
must be obtained by way of Eqs. 3.11 and 3.23. 

Each of the features of the parameter g/f outlined earlier is seen 
clearly in Figs. 3.8 and 3.9 for the isotropic and anisotropic periodic side branch 
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#//(-) for the anisotropic periodic side branch waveguide with three degrees of anisotropy. 

In the d2/di = 1.0 case, the waveguide is isotropic, and as d2/^i decreases it becomes 

increasingly anisotropic (see Fig. 1.3(b)). AS-94-732 

waveguides. In the case of the nondissipative isotropic waveguide, Fig. 3.8 
shows clearly that in the stopbands \g/f\ = 1, and in the passbands \g/f\ < 1 
and Lg/f = wr. As is the case for the dispersion curve, when dissipation is in- 
cluded the sharply cusped features are smoothed. Figure 3.9 shows lg/f{±) (ac- 
cording to the nondissipative theory) for the anisotropic waveguide with three 
different degrees of anisotropy.4 When dx/d2 = 1, the waveguide is isotropic 
and lg/f{±) = rrn in the stopbands, as we expect for an isotropic periodic 
waveguide in the absence of dissipation. Note also that Z#//(+) = Lglr'- 
When the waveguide becomes anisotropic, (the di/d2 = 0.9 and d\/d2 = 0.7 
cases), the phases of p//(+) and g/f^ differ, and in the passbands are split 
symmetrically about zero phase (in other words, g/f{~] = g/fi+)*)- 

The relative component wave amplitude g/f was measured in both 

4The degree of anisotropy for the anisotropic periodic side branch waveguide may be 
adjusted by varying dx, the depth of the shallower of the two side branches (see Fig. 1.3(b)). 
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the isotropic and anisotropic periodic side branch waveguides. In order to 
obtain enough information to resolve the relative amplitude and phase of the 
components of a compound wave field, measurements of the field must be taken 
at two or more different locations. In order to measure the relative component 
wave amplitude, therefore, the Bloch wave field was measured at two points in 
each cell. The details of this measurement are described in Appendix E. 

In Fig. 3.10 is shown the theoretical and experimental values of \g/f\ 
and Ig/f for the isotropic periodic waveguide. Both the magnitude and the 
phase of the relative component wave amplitude show very good agreement with 
the dissipative theory. The predicted resonant, standing wave behavior of the 
component waves in the stopbands is verified by the nearly unit measured values 
of \g/f\. Likewise, the predicted nearly constant phase of g/f in the passbands 
is clearly evident (the nondissipative theory predicts exactly constant phase 
in the passband). Figures 3.11 and 3.12 show the real and imaginary parts, 
respectively, of g/f^ for the anisotropic waveguide. The real and imaginary 
parts are shown instead of the magnitude and phase because there are spans of 
frequency in which Im{#//(:t)} ~ 0. Any small jitter in the value of \m{g/ j^ } 
in these ranges becomes artificially large jitter in the associated values of the 
phase. The agreement between theory and experiment is again quite good 
except at the high frequency end of the measurement range. As was found in 
the dispersion measurements, the theory evidently predicts the occurrence of 
the next stopband at a higher frequency than that at which it actually occurs. 
In Fig. 3.13 is shown the real parts of #//(+) and g/f^ and the imaginary 
parts of g/f^ and —g/f^ (both theoretical and experimental) on scales 
expanded about the 2n stopband. Clearly #//(+) and p//(_) are not equal 
(particularly in the stopbands), which indicates that the effect of anisotropy is 
present in the Bloch wave microstructure, as predicted. In the nondissipative 
theory, it was found that g/fM = p//(_)* in the passbands. Figure 3.13 shows 
that, as we expect of a mildly dissipative system, this is very nearly true: 
ReW/(+)} ^ Re{<?//(-)} and lm{g/f^} ~ -lm{g/f^} in the passbands. 
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3.4 The Multivalued Dispersion Relation and 
the Forward and Backward Propagating 
Bloch Waves 
Two persistent sources of confusion concerning Bloch waves are the 

definitions of the propagation direction and the phase speed. The confusion 
occurs because the Bloch dispersion relation is multivalued. In this section it 
is shown that, while the concept of phase speed is inapplicable to a Bloch wave 
as a whole, the definition of propagation direction may be made on the basis 

of group velocity and attenuation. 

While we have labeled the two Bloch wave solutions (+) and (-), and 
have referred to them as forward and backward traveling Bloch waves, we have 
not defined which is which. It was shown earlier (Eq. 3.4) that 

F^\z + h) = e^+)hF^\z). 

It is tempting to draw the conclusion that if Re{<?(+)} > 0, then F(+) is a 
forward traveling wave and F(-) is a backward traveling wave, both of phase 
speed uj/Relq^}. Such conclusions, which are based on our experience with 
conventional waves, are simply not valid for Bloch waves as the Bloch wave 
number is multivalued. A different (but equally valid) value of q^ is associated 
with a different phase speed and possibly a different propagation direction. As 
a consequence of the multivaluedness of the dispersion relation, the notion of 
phase speed is meaningless in the context of Bloch waves. The usual definition 
of propagation direction, which is based on the sign of the phase velocity, is 
consequently inapplicable as well. In order to arrive at a reasonable definition 
of propagation direction, we must determine which combinations of Re{<7} and 
lm{q} are allowed. 

Mathematically, the dispersion relation is multivalued because its 
evaluation requires the evaluation of an inverse cosine function (see Eq. 3.5). 
As the cosine is periodic (with respect to the real part of its argument), it fol- 
lows that if q(V is a solution, then <7(1) + 2-nmi/h, where mi is an integer, is also 
a solution. Each of this infinite set of alternative values of wave number is a 
valid wave number for one of the Bloch wave solutions. Another characteristic 
of the inverse cosine is that if g(1) is one solution, then q^ = —q^ + 27rra2//i 
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is another. As we saw earlier (the discussion following Eq. 3.3), this second 
set of wave numbers is that associated with the second Bloch wave solution. 
Neither of the Bloch wave solutions has a unique wave number, phase speed, or 
propagation direction.5 Confusion occurs because Bloch waves are frequently 
represented as a sum over a discrete set of spatial frequency components (the 
traveling wave spectral representation, see Eq. 1.3 or Sec. 3.5). Each of the 
set of possible wave numbers associated with a Bloch wave corresponds to a 
component of the spatial frequency spectrum, and therefore has a valid in- 
terpretation. Likewise, the phase velocity associated with each Bloch wave 
number is the phase velocity of the corresponding component of the spatial 
frequency spectrum. 

In order to arrive at a sensible definition of propagation direction 
for Bloch waves, we must consider quantities other than phase. From the 
relationship q^ = -qW + 2nm/h, we find 

Im{9
(2)} = -Im{g(1)} 

and 
{d/du)Re{q{2)} = -{d/du)Re{qw}. 

While the phase itself (i.e., Re{q}) is not unique, the attenuation and group 
velocity are unique. We must investigate which lm{q} (positive or negative) 
belongs with which (d/du)Re{q} (positive or negative) and decide which com- 
bination should be those associated with q(+\ the Bloch wave number asso- 
ciated with the forward propagating Bloch wave, and which should be those 
associated with q^~\ 

In order to find the correct pairing of Re{q} and lm{q), we define qn 

and qT2 to be the real parts of the two solutions such that dqTi/du > 0 and 

5The infinite set of alternative wave numbers for each Bloch wave solution is simply an 
artifact of the wrap-around nature of phase. Recall that Re{qh} is simply the cell-to-cell 
shift in phase associated with a Bloch wave. Clearly Re{(q + 2irm/h)h) = Re{qh} + 2irm is 
an equally valid representation of the phase shift, so q+2-7rm/h is an equally valid Bloch wave 
number. This is simply a spatial aliasing effect. Note that the eigenvalue s is single-valued; 
the multivaluedness of q comes about as a consequence of the representation s = &>qh. 
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dql2/du < 0, and qn and qi2 to be the imaginary parts such that qn > 0 and 
qi2 < 0. Consider now the characteristics of the cosine of a complex argument: 

cos(- q*h) = cos(q*h) = cos(qh)*. 

In the nondissipative case we must solve cos(qh) = 7(0;), where 7(0;) is real. 
If q is a solution, then q* and -q* are also solutions. In other words, we are 
free to pair qn with either q{1 or qi2; q = ±qn ± jn are all valid solutions. This 
makes sense as in the nonsdissipative case Im{q} = 0 in the passbands (i.e., 
qn = Qi2 so the sign doesn't matter) and in the stopbands dqn/du = dqr2/du). 
In the dissipative case, however, 7(0;) is complex. If q is a solution, then q* 

and -q* are not solutions. If qrX + jqi2 is a solution, then qrl + jqn is not. A 
simple way to find the correct pairing is to investigate the limit as the periodic 
waveguide degenerates to a uniform waveguide. In that limit we must have 

ARe/g(±)} _> -^-Re{±k}      and     Im{<?(±)} - Im{±fc}. 
du du 

The necessary pairing is such that 

^-Re{?(+)}>0      and     Im{?(+)} > 0 
du 

^-Re{?(_)} < 0     and     Im^} < 0. 
OUJ 

In other words, q{+) = qn +jqn and ?(-) = qr2+jqi2- This implies attenuation 
in the same direction as the group velocity, which makes sense. It should be 
noted, however, that it is still possible to have Re{<?(+)} < 0 and Re{?(_)} > 0; 
The family of branches of the dispersion relation with (d/du)Re{q} > 0 is 
necessarily associated with lm{q} > 0, but the particular branch chosen is still 
arbitrary. 

The question as to which value of g/f is associated with i?(+) and 
which is associated with q^ may likewise be answered by consideration of the 
uniform waveguide limit. In that limit we must have 

ko2/o-ot)| -y °     and      |oo2/o"o7 I -*■ °°- 

It therefore must be the case that g/f{+) = a02/oro|) and g/f^ = («Wool )-1> 
where, as defined earlier, cr02/o"oT) and oQ2/oo\ are solutions to Eq. 3.11 such 
that |o'o2/o'ol)| < 1 and \oo2/a[\'\ > 1. 



59 

It should be noted that these "rules" as to which parameter values 
are associated with a particular Bloch wave function are derived simply to aid 
in the understanding of what sorts of solutions are possible. The correct set 
of parameters associated with a particular solution is always selected by the 
mathematics. The solution of Eq. 3.5 always yields a correct pairing of Re{q} 
and Im{q}. The appropriate value of g/f always results (via 002/croi) from the 
substitution of the value of q into Eq. 3.10: 0O2/0O1 = {&qh — Tii)/Tf2- 
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Figure 3.14: Several branches of the dispersion relation for the isotropic periodic side 

branch waveguide with As\,/Awg = 1 and d/h — .14. The branches associated with the 
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backward traveling Bloch wave are indicated with dotted lines. 
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It is convenient to adopt, as convention, a single branch of the disper- 
sion relation and refer to it only. The branch which, in the uniform waveguide 
limit, degenerates to the relation q^> = ±k will be denoted <fö an(^ w^[ be 
referred to as the primary branch. Any other branch (say, the mth branch) 
is related to the primary branch by qffl = q^ ± 2nm/h. We also make the 
definition qm = q£\ so that qffi = ±qm.  Several branches of the dispersion 
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curve are shown in Fig. 3.14 for an isotropic waveguide similar to that de- 
scribed in the introduction, but with the parameter values Ash/Awg = 1 and 
d/h = .14 (the different parameters are chosen to move the scatterer resonance 
frequency out of the range of the plot to avoid confusion). When no subscript 
is present, it is assumed that q is on the primary branch. In the language of 
condensed matter physics, a plot of the dispersion relation showing only the 
primary branch, such as that shown in Fig. 3.1, is referred to as the extended 
zone scheme of representation. In other presentations, all branches are shown 
(the periodic zone scheme, as shown in Fig. 3.14) or only the branches falling 

within the first Brillouin zone are shown (the reduced zone scheme). 

3.5     The Bloch Wave Functions 
While the earlier representations of Bloch wave functions (such as 

Eqs. 3.2 and 3.22) are certainly valid representations, they are not strictly ex- 
plicit functional representations. As opposed to depending only upon z, there is 
a somewhat parametric dependence upon n, the cell number associated with z, 
as well. We will first show the two standard functional representations of Bloch 
wave functions, here called the quasiperiodic and the traveling wave spectral 
representations, in explicitly anisotropic form. In addition, a new functional 
representation that proves to be useful in the consideration of nonlinear ef- 
fects is shown. Before these forms are shown, however, we will, as a matter 
of convenience, define the Bloch wave functions F(±)(z) with the normaliza- 
tion F(±)(0) = 1. The normalization renders the wave function dimensionless 
and of unit magnitude such that whatever coefficient multiplies the Bloch wave 
function is simply the value of the acoustic pressure at the center of the ze- 
roth cell (i.e., at z = 0). This makes the Bloch wave functions F(±)(z) very 
strongly analogous to the conventional wave functions e±jkz. The normalized 

Bloch wave functions are 

F(±)(z) 
'    l-(±)e±jkZn    _|_    g(±)e=FJ*Z»' 

i + G?//)(±) 

±jnqmh 

e ±jnqrnh (3.27) 
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where n is the cell number associated with z. 

In the quasiperiodic representation, the Bloch wave functions are writ- 
ten 

F{±\z) = &£{z)ekiq™z, (3.28) 

where $^ (z) is periodic with period h. The subscript qm shows that $£^ (z) is 
dependent upon which branch of the dispersion relation is (arbitrarily) chosen: 
$£;>(«) = &±){z)e*i2™zlh. It is easily verified that Eq. 3.28 satisfies the 
translation relations (Eq. 3.4). In this form, that of a periodically modulated 
traveling wave, the Bloch wave function is seen to be the product of two periodic 
functions that are of generally incommensurate spatial frequencies. The Bloch 
wave functions are therefore quasiperiodic (and therefore aperiodic). From 
Eqs. 3.27 and 3.28 we find 

±j{k-qm)z   ,    (n/ f)(±)p^j(k+qm)z 

*ff«-S i + faßw     W^2'        <3'29> 
and $£^(2 + h) = $^(z).   If the scatterers are symmetric, then we have 

*£(*) = sffHO- 
The second standard representation of the Bloch wave functions, here 

called the traveling wave spectral representation, is found by representing the 
periodic function $^ (z) as the Fourier series 

+°° 1      rh/2 

*£(*)=   E  Cgie***"/*   where   C<g = ± /      *£>Wew~/fcd*. 
n=-oo n •/-»/2 

(3.30) 
The substitution of the series representation of $^(z) into Eq. 3.28 results in 

+00 

F^(z)=   Y,  Cge=y(*™+2,rn/fc)*> (3.31) 
n=—00 

which is seen to be a sum over a discrete spectrum of both forward and back- 
ward traveling conventional waves, the nth of which travels at a phase velocity 
(j/Re{qm + 27rn//i}. Note that each component of the traveling wave spectrum 
corresponds to a branch of the dispersion relation. This is a source of the con- 
fusion with respect to the phase velocity of Bloch waves. The traveling wave 
spectral components of a Bloch wave each has a well defined phase velocity, but 
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the Bloch wave as a whole does not. It is readily found that C^n = C0tm+n, 

and Eq. 3.31 becomes F&(z) = £n C^+me±^0+2<rn+n^z. That is, if in- 
stead of the primary branch q0 we choose the mth dispersion branch qm, the 
traveling wave spectral amplitudes C^n are simply shifted by m. Note that 
both the quasiperiodic and the traveling wave spectral representation show a 
dependence upon the chosen branch of the dispersion relation. 

While the quasiperiodic and the traveling wave spectral representa- 
tions each reveal an interesting way to think of the composition of the Bloch 
wave functions, they both hide what is undoubtedly the simplest way of rep- 
resenting their composition: as a string of compound conventional wave fields 
(as is evident in the "parametric" representation of Eq. 3.22). We begin with 
the definition of the cell wave function, the wave function associated with the 

zeroth cell of the structure: 

,<±)(2) _««»+y*- -v2<^/2 
^W (z) = 0 elsewhere. 

The field in the nth cell is simply -0(±) (z - nh) = iß{±) * 8{z - nh) multiplied by 
the translation factor e±J9m/l, where * denotes the convolution operation. The 
total function may therefore be written 

+oo 

F(±)(*) = ^(±)(*)*   E  S(z-nh)e±jnQh, (3.32) 
n=—oo 

where the convolution of ^(±) (z) with the nth phase (and amplitude) weighted 
delta function in the lattice simply places an appropriately phased (and shaded) 
copy of ij}^{z) in the nth cell of the structure. Note that this representation 
shows no dependence on the chosen branch of the dispersion relation! 

Although all three of the preceding functional representations of Bloch 
wave functions are derived for the global field alone, each may be extended to 
represent the full 3-dimensional field. As was noted when the global and local 
fields were defined, once the global field is determined in the vicinity of a 
scatterer, the local field at that scatterer is, in principal, determined. The full 
three-dimensional field associated with a single scatterer is dependent only upon 
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the incident field, which is, by definition, composed of the global component 
only. The global field on either side of a scatterer, and therefore the total 
incident field, is identical for every scatterer in the waveguide up to factors of 

ejqh rp^e ^JJ 3-dimensional scattered field in the vicinity of the scatterer is 
therefore, up to factors of e?qh, identical to that of every other scatterer in the 
waveguide. Equation 3.32 may therefore be generalized to 

+00 

F(±)(r)=^(±)(r)*   £  6(z-nh)e±jnqh, 
n=—00 

where ^^(r) is the exact 3D field in the zeroth cell. Similarly, Eq. 3.28 may 
be generalized to become 

^(±)(r) = C)(r)e±^ 

where $W(r + hez) = $£}(r) and in the zeroth cell ^(r) = ^(r)^'*" 
and Eq. 3.31 may by be generalized to become 

+00 

FW(r)=   £   Cg»(rx)e*<*"+a'm/*>*l 
n=—00 

where 

Cgi(rx) = { I     ^(rj. + hez)e^h*'hdz. 
1    fh/2 

-h/2 

The translation relation associated with the full three-dimensional field is there- 
fore given by 

Fi±)(r + hez) = F{±)(r)e±jqh. 
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Chapter 4 

Finite and Semi-Infinite Periodic 
Waveguides 

In this chapter the work of the two preceding chapters is generalized so 
as to apply to finite and semi-infinite periodic waveguide systems. Recall that 
up to this point, the findings have all hinged upon the invariance of the system 
under translation, a property that occurs only in infinite systems. It is shown 
in this section that the solution in a periodic waveguide of any length (infinite, 
semi-infinite, or finite) may be represented in terms of the two Bloch wave 
functions. We begin with the definition of the Bloch acoustic impedance, which 
turns out to be a convenient quantity to work with. It is then shown that Bloch 
waves are able to meet an arbitrary terminating impedance type boundary 
condition. As in the conventional wave case, the particular combination of 
forward and backward traveling waves that meets the termination condition is 
best expressed in terms of reflection and transmission coefficients. Finally, a 
general approach to the solution of problems that involve a section or sections 
of periodic waveguide is outlined. 

4.1    The Bloch Acoustic Impedance 
Owing to the compound conventional wave composition of the Bloch 

waves, the impedance is a function of position. It appears, therefore, that we 
will not be able to identify a characteristic impedance for the periodic wave- 

65 
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guide. The Bloch wave impedance, however, is found to be spatially periodic, 
with the same periodicity as the waveguide. As a consequence of the shared 
periodicity we are able to identify, with the adoption of a convention, a char- 

acteristic impedance. 

In light of the translation relations (Eqs. 3.4), the acoustic impedance 
of a Bloch wave shows invariance under the unit translation operation: 

7(    , M P(* + *0 P(z)e±j9h     _    V{z)     _ 
*{Z +   > ~ Awgu(z + h)     Avgu(z)e±"h     Awgu(z)       *{ h 

One period of the waveguide transforms the impedance back into itself. For this 
reason, the impedance in a periodic medium is termed an iterative impedance 
(Brillouin, 1946). Because the structure is invariant under translations of h 

(there is no single preferred reference point along z), the impedance must repeat 

at intervals of h. 

From Eq. 3.22, the acoustic impedance of a Bloch wave field is 

where Z0& = poCo/Awg. As the impedance repeats at intervals of h, the char- 
acteristic impedance may, as a convention, be taken to be the impedance at 
a particular reference point. The reference point is taken to be z = 0, and 
the resultant characteristic impedance, called the Bloch acoustic impedance,1 

is given by 

Zg> _ 3±>(0) = ±zJ^fij- (4-D 

When the waveguide is isotropic we have g/f^ = g/f^ and Bloch acoustic 
impedances are such that Z^~J = -Z$, like the impedances of forward and 
backward traveling conventional waves. When the waveguide is anisotropic 
then we generally have g/f{+) ^ p//(_) and hence Z^ ± -Zßt •  A system 

JThe global pressure field most closely resembles the full three-dimensional field at the 
cell centers. The acoustic impedance associated with the global field alone is therefore most 
representative of the actual impedance. 
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with such anisotropy has some very unusual wave reflection properties, as is 
shown in Sec. 4.2. 

As usual, the characteristics of the Bloch impedance are most readily 
found by examination of the nondissipative case. From Eqs. 3.25 and 4.1, it is 

found that in the passbands 

7(-) _    7(+)* 
^Ba   — -z,Ba 

and in the stopbands 
Re{4t)} = 0. 

The Bloch acoustic impedance is reactive in the stopbands, as might be ex- 
pected. If the waveguide is isotropic as well as nondissipative, then Eqs. 3.11 
and 4.1 may be combined (using Eq. 3.21) to find 

7(±) _ +7n 
ImiTS-TfJl172 (42) 

Im{7S + TS}J 

From the stopband conditions found in Appendix C, it is found that the ar- 
gument of the square root in Eq. 4.2 is real and positive for passband fre- 
quencies and real and negative for stopband frequencies. The Bloch acoustic 
impedance, therefore, is resistive in the passbands and reactive in the stop- 
bands. In Fig. 4.1 is shown the Bloch acoustic impedance for the isotropic pe- 
riodic side branch waveguide. The plot shows the alternating resistive/reactive 
passband/stopband structure, and also that the impedance is a very wildly 
varying function of frequency. Such impedance structure makes the Bloch 
impedance extremely difficult to sythesize for waveguide termination purposes. 
As was found for the other Bloch wave parameters, the inclusion of dissipative 
mechanisms simply tends to smooth these sharply cusped transitions. 

4.2    Bloch Wave Reflection and Transmission 
Consider the case wherein a periodic waveguide occupies the half- 

space z < 0 and is terminated at z = 0 into an arbitrary termination of acoustic 
impedance Zn^. The forward and backward traveling Bloch wave solutions are 
known to meet the transverse boundary conditions (i.e., the waveguide wall 



68 

o 

CQ 

% SR                       27C 
IS*;:»*:!: i.^^^1                                      W# 

4.0 1  1 
3.0 \J j 

- 

2.0 \ 1 

1.0 
" ^ s"— X 

^""~ 

0.0 
 -  \ 

 -I * V— 

-1.0 
\ 
 Resistance     \ 

- 

-2.0  ■• Reactance      ; 

  i L_i 

- 

TC 27C 

uh/c0 

Figure 4.1: The (normalized) Bloch acoustic impedance for the isotropic periodic side 

branch waveguide. The ir and 2n Bragg stopbands and the scatterer resonance (SB) stopband 

are so indicated. 

AS-94-738 



69 

boundary conditions). The question here is whether or not a combination of 
the forward and backward traveling Bloch wave solutions is able to meet the 
arbitrary termination boundary condition. If so, then the trial solutions are 

the finite waveguide solutions. 

The trial solution is the compound Bloch wave field 

p(z) = A+FM (z) + A' F(-> (z) z < 0. 

The acoustic impedance at the interface is 

A+ + A- 
^aL=n — 

which must be equal to the termination impedance Z^. As in the case of 
conventional waves, this requirement simply fixes the relationship between the 
forward and backward traveling Bloch wave amplitudes, and the trial solution 
is indeed the solution. In the usual manner, the solution is best expressed in 
terms of a reflection coefficient: 

R  _A-_    1/Z't> - l/Zx. _ Zt.- z£> 
RB~A+-   I/Z£-I/ZT.-»ZT. + Z£>' '•' 

where RB is the Bloch wave reflection coefficent and 

v — ~ZBa /ZBa 

is a measure of the anisotropy of the system. The compound Bloch wave 
field is able to satisfy the boundary condition in a manner that is strongly 
analogous to that of conventional wave fields. The only difference lies in the 
anisotropy term v, which disappears from the expression for RB when the 
scatterers are symmetric (i.e., when v —► 1). Note that if the terminating 
impedance is rigid (Zxa —> co), then we have RB —► l/V, which may be such 
that \RB\ > 1! While a conventional wave reflection coefficient with greater 
than unit magnitude would violate energy conservation, for the Bloch wave 
case it is simply a consequence of an asymmetric impedance. The pressure 
and velocity fields associated with the forward traveling Bloch wave are simply 
distributed differently in the cell than those of the backward traveling Bloch 
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wave. Recall that the Bloch wave amplitude is defined in terms of the mid-cell 
pressure. If the reflected Bloch wave has a particularly small mid-cell particle 
velocity and/or a particularly large mid-cell acoustic pressure (compared to 
those of the incident Bloch wave), then it is likely that the amplitude of the 
reflected Bloch wave will be larger than that of the incident Bloch wave. 

As is described in Appendix E, the least-squares approach to the 
measurements of q and g/f in the anisotropic periodic side branch waveguide 
entails, as a by product, a measurement of RB as well. In the experimental 
system, the periodic waveguide is terminated into a termination impedance 
of poCoMwg- The magnitude of the Bloch reflection coefficient for this case 
is, in the 2n Bragg stopband, theoretically larger than unity. In Fig. 4.2 is 
shown the theoretical and experimental values of \RB\ for the system in which 
<7(+) and #//(+) were measured (i.e., the system in which the deeper of the 
two side branches that comprises a scatterer is nearest the termination). The 
agreement between theory and experiment is less than perfect, but the large 
reflection amplitudes are clearly evident. 

If the terminating medium is a source-free uniform waveguide of 
acoustic impedance Z^, then the transmission coefficient is 

T_a+   _   l/4"a} + V4t}   _     ZTa(l + U) (44) 

A+      1/zg + l/Z^      vZrt + zg' 

where the transmitted field is p(z) = a+ejkrZ and fcT is the wave number 
associated with the terminating waveguide. 

If the problem geometry is reversed so that we have a conventional 

wave incident upon the interface, the trial field 

f aVfc2 + a-e-jkz   z < 0 
PU)-|       A+

F^\Z)        Z>0 

yields 
7(+)        7 R=a    =ZB.    -Z* (45) 

a+      z£> + Zu 
A+ 9Z^ 

TB = ~= 2:B\  , (4-6) 
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where Z^ is the acoustic impedance of the incident (conventional) wave medium. 
Note that the incident and reflected conventional waves could be those due to 
an incident and reflected Bloch wave; i.e., the incident wave medium could be 

another periodic waveguide. 

If the periodic waveguide is terminated into a semi-infinite uniform 
waveguide that is identical to the periodic waveguide but without scatterers 
(i.e., if Zia = Z-ifc = p0co/Awg), then the reflection/transmission laws have 
a simple physical interpretation. The reflection and transmission coefficients 

then become 

R» = -9/f T^JF      g/f      T-    i + g/f+ gn 

R = g/f+ - g/f        TB = 1 + g/f+ - 1+g/f, 

where the right-arrow denotes the case in which the waveguide degenerates 
to isotropy (i.e., g/f+ = g/f~ = g/f). Note that the role of the reflected 
Bloch wave is to cancel the g+ wave at the interface. That is, the forward 
traveling Bloch wave has a nonzero g+ wave (of amplitude AFg/f+/(l+g/f+)) 
at z = 0. In the absence of sources for z > 0, there can be no backward 
traveling conventional wave at z = 0. The amplitude of the reflected Bloch 
wave, therefore must be such that the /" wave (of amplitude AB/(l + g/f~)) 
cancels the g+ wave at z = 0. The Bloch reflection coefficient shown above 
ensures exactly that cancellation, and the resultant conventional wave field at 

z = 0 is progressive, as it must be. 

4.3    The Analogous Conventional Wave Sys- 
tem 
The findings of the preceeding section lead us to a convenient method 

of solution for systems that include finite or semi-infinite sections of periodic 
waveguide. We make use of what is here called the analogous conventional 
wave system, which is defined as follows. Imagine that each section of periodic 
waveguide is replaced by a section of uniform waveguide that is filled with such 
a fluid that the characteristic acoustic impedance of the section is equal to 
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the Bloch acoustic impedance and the dispersion is equal to the Bloch wave 
dispersion. The resultant, purely conventional wave system is the analogous 
conventional wave system. Each of the reflection and transmission relations of 
Eqs. 4.3-4.6 is identical to that of the corresponding analogous conventional 
wave system. While this is most obvious for the isotropic (i.e., v = 1) case, it 
holds for the anisotropic case as well (we must simply be consistent with the 
definition of impedance for an anisotropic system). 

The solution of the analogous conventional wave system bears a very 
simple relationship to that of the original system. If a wave system includes 
a section of periodic waveguide that spans Z\ < z < z2 (where z = 0 is a cell 
center), then the solution in this interval may be expressed (in the quasiperiodic 
representation) as 

p(z) = A¥F{+\z) + ABF(-\z) = AF&g
+\z)ejqz + AB&->\z)e~jqz:. 

In the corresponding span of the analogous conventional wave system, the 
solution is 

p(z) = AFejqz + ABe-jgz. (4.7) 

We see that the solution of the original system may be recovered from that of 
the analogous conventional wave system simply by multiplication of the for- 
ward and backward traveling components of Eq. 4.7 by &q

+^(z) and $q~^(z), 
respectively. We may alternatively choose to recover the Bloch wave solution in 
the traveling wave spectral representation by multiplication of the components 
by ^CWe^W1 and '£C$-)e~2*in'/h, or in the convolution representation 
by acting on the components with the operators xjj^+\z) * £n<5(z — nh) and 
i}r~'{z) * J2nö(z — nh)} where the multiplication of the operand by the lat- 
tice takes place prior to the convolution. In other words, we may treat the 
sections of periodic waveguide as though they were simply some sort of "acous- 
tic transmission line" with the Bloch acoustic impedance and the Bloch wave 
dispersion. If the field of the analogous conventional wave system is sampled 
at the locations corresponding to the cell centers in the original system, the 
result is indistinguishable from the sampling of the original system at the cell 
centers. If the entire field structure must be known, it may be recovered from 
the analogous conventional wave system solution via a simple operation. 
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Chapter 5 

Bloch Wave Pulse Propagation 

Here we consider the propagation of the Bloch waves that arise from 
a source boundary condition that is not time harmonic. The approach taken 
is to derive and then solve a Bloch wave dispersion integral. In order to solve 
the Bloch dispersion integral, the similarity between the Bloch wave and the 
conventional wave dispersion integrals is exploited. It is shown that we may 
first solve a conventional wave dispersion integral, and then apply an operator 
to the solution to result in the solution of the Bloch dispersion integral. 

In the first section the Bloch wave dispersion integral is derived and 
the "recovery operator" approach to its solution is introduced. In the second 
and third sections, we turn to the solution of the conventional wave disper- 
sion integral. While there are several well known solutions of this integral, the 
validity of these erstwhile solutions has not, to the author's knowledge, been 
considered. It is shown in the second section that a set of characteristic pulse 
distortion distances exists, and that these distances are central in the deter- 
mination of the ranges of validity of the various solutions of the conventional 
dispersion integral. In the third section, both the well known solutions and 
several new solutions are derived in the context of the characteristic distortion 
distances. In this way the validity of all of these solutions is firmly established. 
In the fourth and final section, the properties of the recovered Bloch wave pulse 
are considered. 
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5.1    The Bloch Wave Dispersion Integral and 
Its Solution 
In this section the Bloch wave dispersion integral is derived and the 

general approach to its solution is presented. It is shown that when a poly- 
chromatic Bloch wave is represented as the superposition of a spectrum of time 
harmonic Bloch waves, it appears in the form of a dispersion integral. In order 
to solve this Bloch wave dispersion integral, the similarity between the Bloch 
wave and the conventional wave dispersion integrals is exploited. It is shown 
that we may first solve a conventional wave dispersion integral, and then apply 
a simple operator to the solution to obtain the solution of the Bloch dispersion 

integral. 

5.1.1    Polychromatic Bloch Waves 

The time harmonic results are made general in the usual manner. 
Consider a forward traveling Bloch wave that has a temporal frequency spec- 
trum A(+)(w) at z = 0; i.e., 

r+oo 
A(+)(w)= /      p(0tt)^dt. 

J — oo 

Each frequency component, of differential amplitude A(+\u)duj/2iv, is associ- 
ated with the (differential) time harmonic Bloch wave 

dp(z, t) = 
A<+>(w)du/ 

2TT 
F*+)(z,u)e-jut, 

where the frequency dependence of F^+\ the forward traveling time harmonic 
Bloch wave function, has been made explicit. The integration of all such fre- 
quency components results in an integral representation of a general forward 
traveling Bloch wave: 

1       /*-f-oo 

p{Z)t) = -L /      ftS+\u))F(+\z,u))e-iut(k). 

A similar argument may be used to arrive at a similar representation of a 
general backward traveling Bloch wave, and the sum of the forward and the 
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backward traveling Bloch waves, 

p(*,i) = J- f+°°A(+'MF(+»M)e-^ 
£"K J-oo 

+ L f+°°A^^F^iz^e-^du, (5.1) 

is a fully general integral representation of a compound Bloch wave field. The 
transformation of Eq. 5.1 into the frequency domain is trivial, and the general 

frequency domain solution is 

P(z,u) = A<
+
\U)FM(Z,U) + A<->MF<->(z,w). (5.2) 

5.1.2    The Bloch Wave Dispersion Integral 

Consider the following problem. A semi-infinite periodic waveguide 
contains a pressure source at z = 0 and is of infinite extent in the +z direction. 
The boundary conditions are, (1) p(z,t)\z=0 = p0(t), and (2) a generalization 
of the Sommerfeld radiation condition that is appropriate for periodic media. 
In order for this generalized radiation condition to apply to a system, there 
must be (a), no sources in the system for z > 0, and (b), the system must 
be uniformly periodic. As nonuniformity in an otherwise periodic medium 
generally causes Bloch wave scattering, the Bloch wave radiation condition 
ensures that the solution has no backward traveling Bloch wave component. 
Boundary condition (2) therefore leads to A(_)(w) = 0. Upon transformation 
to the temporal frequency domain, boundary condition (1) becomes 

A(+)(w)F(+)(0,o;) = PoM, 

where P0(u) = /po(t)eju,tdt. Because the normalization of the Bloch wave 
functions is such that F(+)(0,w) = 1 (see Eq. 3.27), the forward traveling 
Bloch wave spectrum is A(+)(o;) = Po(u), and the frequency domain solution 
is 

P(z,u) = P0(uj)F^\z,u). (5.3) 

This solution, transformed into the time domain, is 

p(z,t) = ± I      P0(u;)F^(z,u)e-^tdLu. (5.4) 
Z7T J-oo 



78 

If instead of the acoustic pressure boundary condition we have the velocity 
boundary condition u(z, t)\z=0 = txo(t). then the spectrum of the forward trav- 
eling Bloch wave is A<+'(w) = l/bM^Z^M, where U0(u) = Juo(t)ejwtdt, 
z£! is the Bloch acoustic impedance associated with the forward traveling 
Bloch wave, and Avg is the cross-sectional area of the waveguide. In general, 

then, the equation to be solved is 

1 /•+00 .     . . . 
p(z> t) = 7T- /      A(w)F(z, tj)e-jutdw, (5.5) 

Z7T J-oo 

where for the pressure boundary condition A(w) = PoM and for the velocity 

boundary condition A(w) = C/oM^wg^aV)- As the Problem under consider- 
ation admits only progressive Bloch wave solutions, the (+) and (-) subscripts 

have been dropped. 

Equation 5.5 is the Bloch wave dispersion integral. The relation- 
ship between the conventional and the Bloch wave dispersion integral is most 
apparent when the Bloch wave function is expressed in the quasiperiodic rep- 
resentation. In such a case Eq. 5.5 becomes 

p(z> t) = i- r°° AM*,(*, u)ej^)ze-jujtdu, (5.6) 
Z7T J-oo 

which we see is the conventional wave dispersion integral with the additional 
factor $q(z,u). If we are concerned only with the value of the pressure at the 
cell centers (i.e., at z = nh), then, because $q(nh,u) = 1, Eq. 5.6 becomes 

p(z,t) = — f+0° A(w)e>q{u)'e-iutdu     for     z = nh. (5.7) 

Note that Eq. 5.7 is the conventional wave dispersion integral. Such a finding 
is not unexpected as it was found in the time harmonic case that a Bloch 
wave and a conventional wave of the same wave number are indistinguishable 
if sampled at intervals of h (see Sec. 3.1). Equation 5.7 shows that this is true 
of polychromatic Bloch waves as well. The point of interest is that if we are 
interested only in the value of the wave function at the cell centers, then the 
problem becomes a conventional wave dispersion problem. If we require a more 
general solution, then we must solve the more complicated Bloch dispersion 

integral (Eq. 5.5). 
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With a slightly different perspective, we find an interesting and straight- 
forward method of solution of the Bloch dispersion integral. Note first that not 
only is Eq. 5.7 the solution of the Bloch wave problem at the cell centers, 
but it is also the solution of the analogous conventional wave problem for any 
value of z. The analogous conventional wave problem is that in which the peri- 
odic waveguide is replaced by a conventional wave medium with dispersion and 
impedance equal to the Bloch wave dispersion and impedance (see Sec. 4.3). 
The solutions of the Bloch wave and the analogous conventional wave problem 
are identical at the cell centers; the cell-to-cell or macrostructure of the Bloch 
wave solution is identical to that of the analogous conventional wave problem. 
It is evident that in the solution of the analogous conventional wave problem, 
only information as to the cell-to-cell or macrostructure of the Bloch wave is 
retained. The intra-cellular structure or microstructure has effectively been 
discarded. It is shown in the following section that, as in the time harmonic 
case, the full Bloch wave solution may be recovered from the solution of the 
analogous conventional wave problem by means of a "recovery operation". We 
first solve the analogous conventional wave problem (i.e., Eq. 5.7) to find the 
macroscopic structure of the pulse. If we are then interested in the details of 
the wave structure within a cell, we may then operate on the conventional wave 
solution with the recovery operator. 

5.1.3    The Recovery Operations 

The recovery transformations are operations which, when acting on 
the solution of the analogous conventional wave problem, result in the solution 
of the Bloch wave problem. If p(z,t) and P(z,u) are the time and frequency 
domain solutions of the Bloch wave problem, respectively, and pc(z,t) and 
Pc(z,u) are those of the analogous conventional wave problem, then we define 
a time domain recovery operator 7£t and a frequency domain recovery operator 
Tlu as follows: 

p(z,t) = Kt{pc(z,t)}     and    P(z,u) = KU{PC(Z}üJ)} . 

As we have three representations of the Bloch wave function, we have three 
recovery operations, each one of which recovers the Bloch wave solution in one 
of the three functional representations, and each one of which may be expressed 
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in either the time or the frequency domain.  In terms of the above notation, 
the time and frequency domain solutions of the Bloch wave problem are 

p(Zt t) = J- [+°° A(u)F(z, u)e-iutdu, (5-8) 

and 
P(z,u) = A(u)F(z,u), (5-9) 

respectively, and those of the analogous conventional wave problem are 

Pc(z, t) = ± f °° A(w)^(w)j,e-^dw, (5-10) 
Z7T J-co 

and 
Pc(z,u) = A(u)e^)z. (5.11) 

The recovery operator that recovers the frequency domain Bloch wave 
solution, in the quasiperiodic representation, from the frequency domain con- 
ventional wave solution is simply the multiplicative operator <bq(z,u): 

$q(z,u;)Pc(z,uj) = A(u)*q(z,u>)e*«u>x 

= A(Lü)F(Z,Lü) = P(z,u). 

Similarly, the recovery operator for the traveling wave spectral representation 

is the multiplicative operator EnCnHej2™/'1: 

J2cn(u)e^nz/hpc(z,u) = Y,Cn{uy2™z/hA{uy^)z 

= A(u)Y,Cn(u)ejiQ+2nn/h)z 

n 

= A(u)F(z,u) = P(z,u). 

The frequency domain recovery operator for the convolution representation may 
be written ip(z,u) *z £„ 6(z - nh), where the multiplication of the operand by 
the lattice precedes the spatial convolution, denoted *2: 

^(z,u) *z^6(z - nh)Pc(z,u) = *P(z,Lü) *z^26{z - nh)A{u)eiq^)z 

= A(u)^(z, to) *z Y, &(.* - nh)e^)h 

n 

= A{üü)F(Z,UJ) = P(Z,UJ). 
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The time domain expressions of the three frequency domain operators 
emerge naturally when the expression P(z,u) = TZuPc(z,u) is Fourier trans- 
formed. The quasiperiodic recovery operation P(z,u) = [$q(z,oS)]Pc(z,u) 
becomes 

1   r+°° ■ 4 

P(z, t) = 7T *«(*• w)Pc(*> u)e~3" duJ 
Z7T J -oo 
I       r+oo 1       r+oo 

= ±[     %(z, u)e~^du *t — /      Pc(z, u)e-^duj 
Z7T J—oo lit J—oo 

= Mz>t)*tPc(z,t), 

where 

and *t denotes convolution with respect to time. The quasiperiodic time do- 
main recovery operator is therefore 

(f)q(z,t)*t. 

Similarly, the traveling wave spectral transformation may be written 

Y,Cn(uj)ej2™z/h Pc(z,u), P(z,u) = 

and yields 
1    f+00  

P(*. *) = T- /      E Cn(uy2™/hPc(z, u))e-*"du 
Z7T J-00     n 

= '£e>*m"hcn(t)*tpe(z,t), 
n 

where 
Cr.it) = — [ °° Cn(u)e-iutdw. 

Z7T J-00 

The traveling wave spectral time domain recovery operator is therefore 

n 

Finally, the transformation associated with the convolution representation, 

P(z,u) = \tj){z,u)) *z Y,nö(z ~ nh)} Pc{z,u)> becomes 
\    r+00 

P(z>t) = 7T /      i>(z>u) *z yZ6(z — nh)Pc{z)u)e~jlJJtduj 
27T J-00 n 

= V(z, t) *2 *t J2 6(z - nh)pc(z, t), 
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where i    /■+«> 

Zir J-oo 

The convolution time domain recovery operator is therefore 

n 

It should be noted that the purpose of the above derivation of the 
recovery operators is simply to show that, in principle, the proposed solution 
approach is valid. It is shown in Sec. 5.4 that there are much more practically 
applicable, differential versions of the recovery operators. While the concept of 
the recovery operator is important here, the derivation of the practical forms 
must await the introduction of the pulse envelope formalism. 

To conclude, the problem of solving the Bloch dispersion integral has 
been split into two sub-problems. We must first solve the conventional wave 
dispersion integral associated with the analogous conventional wave problem, 
and then apply the recovery operator of choice to the solution. 

5.2     The Evolution of the Pulse Envelope and 
the Characteristic Distortion Distances 
Thus far it has been shown that the Bloch dispersion integral may be 

solved by the application of a recovery operator to the solution of the analo- 
gous conventional wave dispersion integral. In this section the solution of the 
conventional dispersion integral is considered. Instead of proceeding directly 
to the pulse solution, however, we first recast the problem in terms of the pulse 
envelope. That is, we solve an envelope evolution integral instead of the conven- 
tional dispersion integral. While the pulse function and the envelope function 
are simply related, the problem becomes considerably less cluttered in envelope 
form. It is next shown that there exists a set of characteristic distances asso- 
ciated with the evolution of the pulse envelope, and that if we are concerned 
with the propagation of the pulse over a distance that is small compared to 
one of the characteristic distances, then the envelope evolution integral may be 
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simplified. Finally, the wave equation that governs the evolution of the enve- 
lope is derived and the significance of the characteristic distances with respect 

to the wave equation established. 

5.2.1    The Envelope Evolution Integral 
Just as the conventional dispersion integral (Eq. 5.7) governs the evo- 

lution of a wave pulse, we may derive another, slightly simpler integral that 
governs the evolution of the envelope of the pulse. The source boundary con- 

dition is taken to be 
p(0,t) = ao(t)e-^ot, (5.12) 

where aQ(t) is the (real) envelope function of characteristic time scale 2r0 and 
uj0 is the pulse carrier frequency. The envelope spectrum is 

Ao(u)= f+°° a0(t)e
juJidt 

J—oo 

and the pulse spectrum is 

A(u) = i- r°°a0(t)e^-"0)tdt = A0(u - u0), (5.13) 
Z7T J-oo 

both of which have a characteristic bandwidth1 of 4/r0. The substitution of 
Eq. 5.13 into Eq. 5.7 results in the dispersion integral 

p(z> t) = J- f+°° A0(u - u0)e
j^)ze-^dw, (5.14) 

Z7T J-oo 

where the subscript c for conventional wave has been dropped for simplicity. 
In anticipation of a solution in the envelope-carrier form 

p(z,t) = a{z,t)eJMUo)z-u,otK (5.15) 

where a(z,t) is a carrier modulating envelope function (see Fig. 5.1), we rewrite 
the dispersion integral 

p(z,t) = e*«(wo)z-wo'1— [+°° A0(u - Uoy^)-^^e-^-w^duj 
27T J-oo 

= eJ[g("o)*-"ot]_L [+c°AoifyeJQW'e-Wdn, (5.16) 
27T J-oo 

lrThe Gaussian envelope function e-(t/T°)   has a characteristic duration 2T0 and a spec- 
trum proportional to e-^0^2. The characteristic bandwidth is therefore 4/T0. 
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where Q = u — UQ and Q(ty = q(u) - q(u0). 
identify the envelope evolution integral 

Prom Eqs. 5.15 and 5.16, we 

a(z,t) = ±- f+0°A0{nyQ{n)ze-imdn, 
Z7T J-oc 

(5.17) 

where the form of the integral leads us to refer to 0, and Q(£l) as the envelope 
frequency and envelope wave number, respectively. It should be noted that the 
pulse envelope function defined here differs from another that is occasionally 
encountered in the literature. This other envelope function is defined to be the 
real, positive definite function that envelopes the pulse (i.e., the magnitude of 
the pulse envelope function defined here). 

Figure 5.1: An example of a pulse and the associated (real) envelope function. 

AS-94-740 

5.2.2    The Characteristic Envelope Distortion Distances 

Here it is shown that if the propagation distance is sufficiently short, 
then the envelope evolution integral may be simplified considerably and may, 
in some instances, be integrated analytically. As soon as we say that the 
propagation path is "short", we must ask, "short compared to what?" This is 
the question that is addressed here. 
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Because ao(t) is a function that is slowly varying on the scale of a 
carrier period (i.e., 27r/u>o -C To), the signal spectrum is confined to a narrow 
band of frequencies near u = u>0. The envelope spectrum, which is simply the 
pulse spectrum shifted down in frequency, is therefore similarly confined to a 
narrow band of frequencies near Q = 0. Because the integrand of Eq. 5.17 is 
significant only near Q = 0, we need only be concerned with the behavior of 
Q(Cl) in this narrow frequency band. The Maclaurin expansion of Q(fl) is 

OO      I 

n=0 n' 
OO      1 OO       1 

= Ei'4B)"B+jE^B)nn. 
n=l n n=l n 

(5.18) 

(5.19) 

where we have used the definitions Q(0) = 0 and 

Qw(0) 
dnQ 
dün 

dnq 

n=o dun 
(n)/      \ (") (n)   ,     •    (n) 

U = UJQ 

The exponential term in the envelope evolution integral is therefore 

g3Q(fi)z _ jKPtlzjl^fPz-j^&Z .. 'e-aPn,e-$cg>ti>,e-$43>&z 

(5.20) 
We see that the terms in the first set of brackets (those involving K), which 
originated from the real part of the expansion of Q(tt), are dispersive terms 
and those in the second set of brackets (those involving a), which originated 
from the imaginary part of the expansion, are attenuation terms. 

Consider the function eJK° nnz/nl
t the nth term from the real part of 

the expansion. This function may in turn be expanded as 

» 
<JW"*/'« = i+jK$*trz/n\ + 

»f If \KoQnz/n\\ «C 1, then we have eJKon'nnz/n' ~ 1 and the term may be ne- 
glected from the expansion shown in Eq. 5.20. Similarly, the nth term from the 
imaginary part of the expansion may be neglected provided |a0

n'Qnz/n\\ -C 1. 
Because the envelope spectrum is localized to within a range of ~ 2/TQ of 
Q = 0, we know Q, = 0(2/r0). The nth term of the real part of the expansion 
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may therefore be neglected provided |4n)(2/r0)
n*/n!| < 1, or, equivalently, 

provided 

2< 
n! r0

n 

Similarly, the nth term of the imaginary part of the expansion may be neglected 

provided 

2« 
TO 

2"4n) 

In other words, each term in the expansion has a characteristic distance asso- 
ciated with it. If we are concerned with the propagation of the pulse over a 
distance that is very small compared to the characteristic distance associated 
with a particular term in the expansion, then that term may be neglected. It is 
not until the pulse nears a particular characteristic distance that the distorting 
effects of the associated term in the expansion become significant. We make 

the definitions .    n 

4">M = £-& (5.21) 

4"><<*) = £-&• (5-22> 
which are the characteristic distortion distances associated with the nth term in 
the expansion. The real expansion terms (those arising from K) are dispersive 
distortion terms, and the distances 4n)(^o) are the characteristic distances 
associated with dispersive distortion. The imaginary expansion terms (those 
arising from a) are attenuation distortion terms, and the distances ^n)(^o) are 
the characteristic distances associated with attenuation distortion. It should 
be noted that this method of determination of the importance of terms in 
the envelope evolution equation may be applied directly to the conventional 
dispersion integral (Eq. 5.7) as well. As might be expected, the characteristic 
distortion distances found in that case are the same as those found here. 

The magnitudes of the characteristic distortion distances z£\ z£\ 
z£\ and z^ are shown as functions of the dimensionless carrier frequency 
uoh/co in Fig. 5.2. The distances shown are those for the isotropic periodic 
waveguide described in the introduction and for the case in which U0T0 = 8n 
(i.e., there are ~8 carrier cycles over the duration of the pulse).   Near the 
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centers of the passbands, where the real part of the Bloch wave number is a 
nearly linear function of frequency and the imaginary part is nearly constant, 
the characteristic distortion distances are consequently very large. Near the 
stopbands, however, where both the real and the imaginary parts of the Bloch 
wave number have a strong dependence upon frequency, the characteristic dis- 
tortion distances become quite small.  In the vicinity of the stopband edges, 

uh/c0 

Figure 5.2: The magnitudes of the first four characteristic envelope distortion distances 

as functions of carrier frequency for a pulse with a duration of 8 cycles propagating in the 

isotropic periodic side branch waveguide. 

AS-94-741 
they become less than a structure period. 

Equations 5.21 and 5.22 show that the characteristic pulse distortion 
distances are bandwidth dependent. For a given carrier frequency u>0 and enve- 
lope function ao(t/ro) of characteristic duration TQ, Eqs. 5.21 and 5.22 give us a 
set of characteristic distances. If the carrier frequency and envelope function / 
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are held fixed, but the duration of the envelope is doubled (r0 -> 2r0), then the 
pulse bandwidth is reduced by a factor of 2 and the nth characteristic distor- 
tion distance is increased by a factor of 2n. The narrower the pulse bandwidth 
is, the further the pulse propagates before a particular pulse distortion term 
begins to have a significant distorting influence on the pulse. 

5.2.3    The Envelope Wave Equation 

An alternative approach to the solution of the problem would be to 
derive and solve the wave equation that governs the evolution of the envelope. 
While the approach chosen here is to solve the envelope evolution integral, 
the envelope wave equation allows us to identify the relationship that exists 
between the present problem and several related problems, and is therefore of 

interest. 

In order to arrive at the envelope wave equation we proceed backwards 
through the solution technique by which a spatial evolution type wave equation 
is solved via Fourier transforms. As the problem at hand is a boundary value 
problem, the dispersion relation q = q(u) (or, equivalently, Q = Q(ty) is of 
the boundary value form as opposed to the initial value form u = u(g). Such a 
dispersion relation is the space-time Fourier transform of a partial differential 

equation of the form 

£+?«■£-"■ (5-23) 

which is the spatial evolution equation form, as opposed to 

which is of the temporal evolution equation form associated with initial value 
problems. Upon transformation, Eq. 5.23 becomes the polynomial dispersion 
relation q + T,Cn(-j)n+1uJn = 0. We apply this solution technique in reverse 
to recover the envelope wave equation from the envelope dispersion relation. 

The Fourier transform of the envelope function a(z, t) is, from Eq. 5.17, 

A(z,Q) = A0(Q)e^n)z. (5.24) 
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Equation 5.24 is the envelope frequency domain solution of the envelope evo- 
lution problem. Operating on this solution with d/dz, we find 

^3. = AQmQ(nyQmz = JQMM*, «)• (5-25) 
az 

The inverse Fourier transform of Eq. 5.25 is 

1    ,+oc dAe_mdü = ± f+°° Q{n)A(zt tye-^dü, 
2n J-oo   az 2ir J-oo 

or 

^-a(Zi t) = ±- /+°° Q(Q)A(z, n)e-jMcM. (5.26) 
az 2ir J-oo 

With the introduction of the expansion of the envelope wave number (Eq. 5.18), 
Eq. 5.26 becomes 

n=l 

or, because Q<n)(0) = ?(n)M = qin)', 

Equation 5.27 is the progressive wave equation that governs the evolu- 
tion of the pulse envelope. The method used to recover the wave equation from 
the integral solution, the inverse of the Fourier transform solution method, is 
simply a way of verifying the validity of the standard operator formalism for 
the envelope wave number and envelope frequency. In the standard operator 
formalism, a wave equation is recovered from a dispersion relation by replacing 
the wave number and frequency by their associated operators: 

q~-j^ u~jw (5.28) 

Here, we have shown that such formalism holds for the envelope quantities as 

well: 
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If we begin with the expression for the envelope dispersion relation shown 
in Eq. 5.18 and replace the envelope wave number and frequency with their 
associated operators, Eq. 5.27 results. 

The source boundary condition that the solution of Eq. 5.27 must 
meet is found via the pulse boundary condition shown in Eq. 5.12. By the 
definition of the envelope, p(z,t) = a{z,t)e^qoZ-^. We therefore have 

or 

p(0,t) = a(0,t)e-^ot = a0{t)e-^ot, 

a(0,t) = a0(t). (5.29) 

The significance of several of the terms in Eq. 5.27 becomes apparent 
when, using q^ = KQ? + ja^, the equation is rewritten as 

da + J»da + f Ir-V^ + 7 T -7-1^n)— = 0 (5 30) 

The first two terms we recognize as the linear, lossless, nondispersive, progres- 
sive wave equation in a(z,t), the solution to which is a(z,t) — ao(t — K0 Z). 

In other words, the first two terms represent nondistorting propagation of the 

envelope at the group velocity 

IM1 (i) =   ^ 

U)—UJQ 

g0     i/,vu        dRe{q} 

The remainder of the terms cause envelope distortion. 

The relative importance of the envelope distortion terms may be in- 
vestigated by the transformation of Eq. 5.27 into dimensionless form. Consider 
the propagation of a pulse of characteristic amplitude C0 and characteristic du- 
ration r0 over a propagation distance zp. The introduction of the dimensionless 
variables ä = a/C0, i= 2t/r0, and z = z/zp into Eq. 5.27 results in 

d~a i T r-1 (    Zp    ) dn~a   i f r-1 ( ^ ) — = o 
d~z     h U!r0V2"4n) / dln        -i U!r0V2"^n) / ^ 

As in the analysis of the dispersion and envelope evolution integrals, the nth 

real term is negligible provided zp <C \U\TQ/2nK(Q)\ and the nth imaginary term 
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is negligible provided *p <C |n!r0
n/2naj,n)|. Each term in the partial differen- 

tial equation is associated with an exponential term in the envelope evolution 
integral. If we are interested in the pulse after having propagated a distance 
that is much less than the characteristic distance associated with a particular 
term, then that term may be neglected in both the wave equation and the 
integral solution. For example, the term ej"°" fi"2 in Eq. 5.17 and the term 
(l/n\)jn~1KQi)dna/dtn in Eq. 5.27 are both associated with the characteristic 
distortion distance z^\ If we are interested only in propagation over distances 
z «C \z^\, then both terms may be neglected. 

It is worth noting that the envelope evolution equation may be de- 
rived directly from the dispersion integral without making use of the envelope 
frequency and wave number. We begin with the Taylor expansion of the disper- 
sion relation about the carrier frequency. With the multiplication of both sides 
of the expansion by p(z, t), and the replacement of q and u by their associated 
operators, as shown in Eqs. 5.28, the expansion becomes 

-(4 + *)p = |i^"»(4-o)"P. (5.31) 

With the introduction of the envelope-carrier form p(z,t) = a(^,i)ej'9o2_CJotl, 

Eq. 5.31 becomes 

- j^t»-«* = £ ±q™ ± (^j\-uo)n-k^a(z,ty^-^,     (5.32) 

where (?) = n\/{n - k)\k\ is the binomial coefficient. The result of the dif- 
ferential operator dk/dtk acting on the envelope-carrier form of the acoustic 
pressure field may similarly be expressed in terms of the binomial coefficients, 
and Eq. 5.32 may be written 

.da     ^1   (B)A (n\.k. 
k(k\.    .    ^dk-la 

or, equivalently, 

^'t^ttmi-vri-^^.  <-3) 
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where the index i = fc - I is flipped and shifted with respect to I. The double 

sum Efc=o Eto may be rewritten £?=0 ELi. ^d the identity 

where &,„ is the Kronecker delta function, may be used to express Eq. 5.33 

da     Ä J_      l(n)^a=0 

which is the envelope evolution equation found earlier. 

5.3    Conventional Wave Pulse Envelope 
Solutions 
We may now consider some solutions of the envelope evolution prob- 

lem. These solutions determine the cell-to-cell or macrostructure of the Bloch 
wave pulse (the issue of the microstructure is addressed in Sec. 5.4). The reader 
should be reminded, however, that the envelope evolution integral determines 
the envelope function (and, by Eq. 5.15, the full pulse solution as well) for 
wave pulses that propagate in an arbitrary dissipative and/or dispersive con- 
ventional wave medium. As the problem to be solved here is generic, the results 
found here are likewise generic. The solutions serve not only to describe the 
macrostructure of the Bloch wave pulses that are of interest here, but serve also 
to describe the envelopes of pulses that propagate in an arbitrary dissipative 
and/or dispersive conventional wave medium as well. 

While there are two "classic" solutions of the dispersive pulse prop- 
agation problem that appear in the literature (the "nondistorting pulse" so- 
lution shown in Sec. 5.3.1 and the "dispersive spreading" solution shown in 
Sec. 5.3.2), the conditions for the validity of these solutions is an issue that 
has not been addressed. As a consequence of the ill-defined validity of these 
solutions, the concept of group velocity, which becomes defined in the course of 
the aforementioned distortionless pulse solution, is likewise ill-defined in terms 
of conditions of validity. When the solutions are cast in terms of the character- 
istic distortion distances developed in Sec. 5.2.2, however, the validity of the 
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solutions becomes clearly denned. For this reason, the "nondistorting pulse" 
and "dispersive spreading" solutions are rederived here. In addition, several 
new solutions of the dispersive pulse propagation problem are presented. Novel 
dispersive distortion effects such as pulse carrier frequency shifting and pulse 
acceleration are found. 

The pulse distortion effects may be categorized as being either of the 
AM type or the PM (or FM) type. The AM (amplitude modulation) distortion 
effects arise from distortion of the magnitude of the envelope function and 
PM (phase modulation) distortion effects arise from phase distortion of the 
envelope function. The magnitude of the envelope function is what is often 
considered to be the pulse envelope; it is the function that envelopes the pulse. 
As the magnitude of the envelope function evolves, so evolves the overall shape 
of the pulse. In other words, the magnitude of the envelope function carries 
the information as to the AM distortion effects. The phase of the envelope 
function, on the other hand, influences the pulse carrier. A net accumulation 
of phase in the envelope function at some value of z is reflected in a net phase 
shift of the pulse carrier. Time dependence in the envelope phase at some value 
of z causes phase modulation of the pulse carrier. The phase modulation may 
include net shifts in the carrier frequency or ramping of the carrier frequency. 
In other words, the phase of the envelope function carries information as to 
the FM distortion effects. Examples of AM and FM distortion are shown in 
Fig. 5.3. 

5.3.1     Distortionless Pulse Propagation and the Bloch 
Wave Group Velocity 

Consider the case in which the pulse propagates over a distance that 
is small compared to any of the characteristic pulse distortion distances. In 
other words, we have z <C l^l for all n > 2, and z <C \z^\ for all n > 1. 
We may therefore discard all envelope distortion terms in Eq. 5.30, and are left 
with only the first two terms. As is evident in the discussion following Eq. 5.30, 
the group velocity is cgT(u) = \/KS

1
\U), and the group velocity evaluated at 

the carrier frequency is written Cgo = \/K^{UQ) — 1/K0 . The envelope wave 
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(b) AM distortion (c) FM or PM distortion 

Figure 5.3: An example of an initial pulse and the pulse after having undergone AM and 

FM (or, equivalently, PM) distortion. 

AS-94-742 
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equation may therefore be written 

oz     Cgo at 

which we recognize as the linear, lossless, progressive wave equation. If in- 
stead we choose the integral approach to the problem, we discard all envelope 
distortion terms in the envelope evolution integral (Eq. 5.17), and are left with 

a(z,«) = 7T- /      Mtye?"* ^e'^da 

The effective dispersion relation is 

q(u) = KO + ja0 + K£\U - u0). 

The solution to the wave equation is simply a(z, t) = a(t — z/cgo), or, 
with the application of the envelope boundary condition (Eq. 5.29), a(z,t) = 
ao(i-2/cgo). Similarly, the envelope evolution integral may easily be evaluated 
by rewriting it in the form of a Fourier transform: 

a(z, t) = ^- [+°° AQ{ü)e-jn{t-z/c^dÜ = ao{t - z/cga). (5.35) 

The pressure wave function, given by p(z,t) — a{z,t)e^qoZ~Uot\ is therefore 

p(z, t) - a0(t - z/cgQ)e-aoze^z-"ot\ (5.36) 

Equation 5.36 is the classic "nondistorting pulse" solution that is found in abun- 
dance in the literature. The carrier propagates at the phase velocity UQ/KQ and 
decays exponentially at the decay rate cuo (i-e-, the carrier propagates as does 
the unmodulated carrier). The pulse envelope propagates without distortion 
at the group velocity Cgo- It is this solution that offers the most concrete def- 
inition of the group velocity.2  The pulse propagates at the group velocity over 

2The group velocity has other significant interpretations with regards to the velocity 
of energy transport, as shown in Sec. 7.3, and the asymptotic velocity of propagation of 
frequency information, as shown in Sec. 6.2.1 
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distances that are small compared to the smallest of the characteristic distor- 
tion distances. Beyond the smallest distortion distance, the pulse distorts and 
there is no generally applicable definition of the velocity of the pulse. 

Both the dissipative and the nondissipative theoretical values of the 
group velocity for the isotropic waveguide described in the introduction are 
shown plotted in Fig. 5.4.   In the passbands, the group velocity is less than 
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Figure 5.4: The dissipative and nondissipative group velocities for the isotropic periodic 

side branch waveguide. In the stopbands, the nondissipative group velocity is infinite. 
AS-94-743 

Co, and decreases as a band edge is approached. In the stopbands, the group 
velocity is infinite in the nondissipative case and very large (compared to CQ) 

but finite in the dissipative case. 

An example is illustrative. Consider a pulse with a carrier frequency 
of 3200 Hz and a duration of 8 carrier cycles that propagates in the isotropic 
periodic waveguide described in the introduction. The smallest of the char- 
acteristic distortion distances is, as shown in Fig. 5.2, about 200 waveguide 
cycles. The nondistorting pulse solution (Eq. 5.36) is therefore, for this pulse, 
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Figure 5.5: The time series measured at a sequence of locations in the isotropic periodic 

waveguide.   The pulse has a carrier frequency of 3200 Hz, a duration of 8 cycles, and a 

Gaussian envelope. Each time series is placed at a position along the z axis that corresponds 

to the location of its measurement to result in a sort of characteristics plane view of the 

propagation of the pulse. 
AS-94-744 

valid up to distances of ~5 m. In Fig. 5.5 is shown a sequence of measurements 
(described in Appendix E) of the acoustic pressure at the cell centers3 for such 
a pulse. The time series obtained at a particular cell is shown at a position 
along the z axis that corresponds to that of the cell. The result is a sort of 
characteristics plane view of the propagating of the pulse. The pulse shows no 
noticeable distortion over the 0.8 m measurement range, as predicted on the 

3At the cell centers, the Bloch wave pressure field is identical to that of the analogous 
conventional wave problem. 
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Figure 5.6: The arrival time of the pulse peaks for the data set shown in Fig. 5.5. The pulse 

has a carrier frequency of 3200 Hz and a duration of 8 cycles. The slope of this distance-time 
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basis of the theory. In Fig. 5.6 is shown a plot of the time of arrival of the 
pulse peak as a function of distance. The pulse peak is simply the peak of the 
magnitude of the pulse envelope, which is determined by AM demodulation of 
the pulse, as described in Appendix E. The slope of such a curve should be, 
given the validity of the nondistorting pulse solution, a good measure of the 
group velocity. A linear regression of the time-distance data yields a slope of 
302.0 m/s, and the theoretical value is 302.4 m/s. As is predicted on the basis 
of the theory, the pulse propagates without distortion at the group velocity. 

One particularly intriguing feature of Bloch wave group velocity is 
that, in the stopbands, the group velocity becomes larger than the free-medium 
phase speed CQ. Indeed, in the nondissipative case the stopband group velocity 
is infinite! While such large, so-called "absorption band" group velocities are 
acknowledged in the literature, it is argued that in the absorption band, where 
the dispersion relation is complex, the expansion of the wave number, and 
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hence the solution and the definition of the group velocity, all become invalid 
(Jackson, 1975). While the real expansions that appear in the literature do 
indeed become invalid in the stopbands, the expansion used here (Eq. 5.19) is 
completely general. In our theory, the pulse propagates without distortion up 
to the smallest characteristic distortion distance regardless of whether or not 
the dispersion relation is complex. 

Consider the case of an 8 cycle pulse of carrier frequency 1560 Hz 
that propagates in the isotropic waveguide described in the introduction. Ac- 
cording to the theory, the pulse should propagate without distortion at a group 
velocity of 10,004 m/s up to a distance of about 1.4 m. In Fig. 5.7 is shown 
the characteristics plane view of a series of measurements of the acoustic pres- 
sure associated with such a pulse. While the pulse does decay as rapidly as 
would the unmodulated carrier, the pulse does indeed propagate with little or 
no distortion for nearly a meter at a very large group velocity. In this case, 
the linear regression of the peak arrival time against distance yields a group 
velocity of 3,158 m/s. While the measured group velocity is certainly large, it 
differs substantially from the theoretical value. This is due to the measurement 
inaccuracy that is inherent in the measurement approach. When the group ve- 
locity is very large, the peak arrival time becomes very small, and inaccuracy 
in the detection of the peak arrival time causes huge variation in the resultant 
propagation speed. It is clear, nonetheless, that the large stopband group veloc- 
ities do indeed correspond to supersonic pulse propagation. While such pulses 
do propagate very fast, they don't, owing to the large associated attenuation, 
travel far. It is particularly striking to view all eight time series on the same 
temporal axis, as is shown in Fig. 5.8. The pulse arrives at all downstream 
measurement locations simultaneously! The phase of the carrier advances by 
7T from cell-to-cell, as is expected of a Bloch wave with a 7r-stopband carrier 
frequency. 

The Bloch wave group velocity is measured in the following manner. 
The time of arrival of the pulse peak is detected as a function of propagation 
distance over a range that is short compared to the smallest characteristic dis- 
tortion distance for the pulse. Over such a measurement range, the nondistort- 
ing pulse solution (Eq. 5.36) is valid and a linear regression of the time-distance 
data should consequently be a good measure of the Bloch wave group veloc- 
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Figure 5.7: The characteristics plane view of measurements of a 1560 Hz (ir Bragg stopband) 

Gaussian pulse with a characteristic duration of 8 cycles. Although it decays rapidly, the 

pulse arrives at all downstream microphone locations essentially simultaneously, indicating 

a very large group velocity. 
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ity. A difficulty with such a measurement approach arises when the smallest 
characteristic distortion distance is less than a waveguide cycle length. In such 
a case the pulse is significantly or even severely distorted before propagating 
even a single structure period and the Bloch wave group velocity is immeasure- 
able. The peak arrival time technique is therefore invalid over such ranges of 
frequency. Theoretical and measured values of the Bloch wave group velocity 
are shown in Fig. 5.9. The darkened bands indicate the frequency bands in 
which the smallest characteristic distortion distance is less than h. The the- 
oretical and experimental results show fairly good agreement away from the 
band edges, and poor agreement in the vicinity of the band edges, as expected. 

It should be noted that the distortionless pulse solution of the enve- 



101 

CÖ 

CO 
CO 
CD 
>-i 
ft 

CO 

1 

15 

—i   r               i                  i —i 1— ■■■"T  r 

10 ii 111 A1 
5 

0 

-5 

Aul if' ID 1 if A 11    A j 

Uli    ' r 
III II lit || \\ffl 

-10 
i V ' 

* 
-15 

1                       I ■ 

1 0 12 14 16        18 20     : £2 24 26 28 
time (ms) 

Figure 5.8: The measurements of the 1560 Hz (n Bragg stopband), 8 cycle Gaussian pulse 

shown in Fig. 5.7 shown on a single time axis. The pulse arrives at all downstream measure- 
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lope evolution integral is the only solution that may be found for an arbitrary 
source envelope function. In order to arrive at any further solutions, the source 
envelope function must be specified. In the remainder of the solutions shown 
here, for example, the source envelope function is taken to be a Gaussian. While 
these solutions (and conclusions based thereon) are therefore not as general as 
that shown above, they do serve to demonstrate tendencies, and are in that 
way of value. 

5.3.2    K,W Distortion 

In the case that the smallest characteristic pulse distortion distance 
is z^ (the dispersive distortion distance of lowest order), we may consider the 
evolution of a pulse under the influence of the pulse distortion term associ- 



102 

4000 

Frequency (Hz) 

Figure 5.9: Theoretical and experimental values of the Bloch wave group velocity for the 

isotropic periodic side branch waveguide. The darkened bands indicate the bands of frequency 

in which the smallest characteristic distortion distance is less than the waveguide period, and 

the measurement technique consequently invalid. 
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ated with the distance z^ only. In other words, we restrict the distance of 
propagation of the pulse to distances such that z < |4n)l for all n > 3 and 
z < |^n)| for all n > 1. We do, however, allow propagation up to and beyond 
the distance 42). In such a case we may solve for the evolution of an initially 

(2) Gaussian envelope to identify the characteristics of KQ   distortion. 

It should be noted that the K
(2)

 distortion solution shown here is not 
new. In fact, it is the classic "dispersive spreading" solution that is used to 
demonstrate the effects of dispersive distortion (Jackson, 1975). As in the case 
of the distortionless propagation solution (Eq. 5.36), however, it is not pointed 
out in the literature that the solution has a limited range of validity. In fact, 
if 42) is not the smallest of the characteristic distortion distances, then the 
solution is not valid at any range. The solution is rederived here simply to cast 
it in the light of the characteristic distortion distances and determine its range 

of validity. 

Upon discarding all but the K^ distortion term, the envelope wave 

equation (Eq. 5.27) becomes 

da      1 da     j  {2)d
2a ,      , 

dz     Cgo at     2      at1 

the associated envelope evolution integral is 

a(z,t) = ±- f °° V«)^"^" V'™dfi, (5.38) 
27T J-oo 

and the effective dispersion relation is 

q(u) = Ko + jocQ + ^(u - u)o) + 2Ko2)(w - ^o)2- 

Note that the envelope wave equation (Eq. 5.37) is the linearized nonlinear 
Schrödinger equation for a boundary value problem (i.e., a spatial evolution 
form of the equation) (Jeffery and Kawahara, 1982). The source envelope 
function is taken to be the Gaussian function ao(i) = C0e~(t/To) , in which 
case the envelope spectrum is A0(Q) = Cor07r1/2e~(nTo/2)2. For such a source 
function, Eq. 5.38 is 

a(z,t) = CoW2- /+~eHV2)2+;4V2]nV^/^dQ, 
27T i-oo 
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which may be solved by completion of the quadratic in tt in the exponential 
function and integration of the resultant Gauss-Presnel type integral. The 

result, which is well known, is 

,    . Co            / (t - z/cgp)2      \ ,      . 
aM=

ll-j2^^rSY^{-^-3^/rS)S- <5'39) 

We make use of the fact that 2K0
2)

Z/T^ = z/zg\ and rewrite Eq. 5.39 

a(Z> *) =   M     ,    /../..   A2H/4 eXP [l + iz/z^^X   r0
2[l + (^K)2]J 

•exp|,-tan    (z/zK)-j ^ l + (z/zKyj' {5A0) 

where the superscript (2) has been left off of 42) ft>r clarity. The scaling of z 
by the characteristic distortion distance zK is evident in its appearance only in 
the form z/zK. If z < zK, then Eq. 5.40 reduces to the distortionless solution 

a(z,t) = C0e-{t-z/c*o)2/TZ, 

as expected (see Eq. 5.35). 

The AM distortion effects that arise from the KQ   term may be most 
readily identified by writing the magnitude of the envelope function in the form 

\a(z,t)\ = C(z)e-(t-z/c*o)2/T{z)\ 

where we have introduced the pulse amplitude and duration functions 

C{Z) = [\ + {z/zKW 

T{Z) = TO[1 + {Z/ZK)
2
\
1
'
2
. 

The envelope remains Gaussian at all values of z and propagates at the group 
velocity associated with the carrier frequency. The envelope also decays and 
disperses (i.e., spreads) according to the pulse amplitude and duration func- 
tions, which are shown in Fig. 5.10. We see that the pulse propagates es- 
sentially without distortion to the distance zK, where it begins to decay and 
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Figure 5.10: The amplitude and duration of a pulse under the influence of K^ distor- 

tion. The pulse propagates essentially without distortion out to the characteristic distortion 

distance z\.  , where it begins to decay and spread. 

AS-94-749 
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spread. Well beyond the characteristic distance the amplitude and duration 
functions asymptotically approach C{z) ~ C0(z/zK)-

1/2 and r(z) ~ r0(z/zK), 
respectively. The pulse width increases without bound and the pulse amplitude 

decreases without bound. 

The FM distortion effects are most readily investigated by consider- 

ation of the entire pressure wave function, which may be written 

p(z,t) = c(z)e-(t-*/^)a/TW2e-aoVfl(z't)J (5.41) 

where the phase function 

has been introduced. The quadratic term in the phase function causes carrier 
frequency modulation and is most readily interpreted by introducing the local 

frequency (Whitham) 

^Z't) = —dr=W0 + 2[l + (z/zKy)       ri      ' (5-42) 

which shows that the carrier frequency is indeed modulated. The local fre- 
quency is wo at the pulse peak (at t = z/cg0), and ramps down in time if the 
dispersion is anomalous (i.e., if 42) < ° and therefore z0 < 0) and ramps up 
in time if the dispersion is normal (i.e., if K^ > 0 and therefore z0 > 0). This 
makes physical sense, as if the dispersion is anomalous, then the high frequency 
phase fronts propagate faster than the low frequency phase fronts. The higher 
(local) frequencies tend to migrate to the head of the group and low frequen- 
cies to the tail of the group, and we have downward ramping of the carrier 
frequency. As such a ramped FM pulse is generally referred to as a "chirp", 
the chirping that comes about as a consequence of the K0

2)
 dispersive distortion 

is referred to here as "dispersive chirping". 

The degree of severity of the dispersive chirping is given by the chirp 

rate (in Hz/s): 
_ dm{z,t) _       z/zK      2 

m^z>-      dt      ~\ + {Z/ZK)*T%' 
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Figure 5.11: The chirp rate mu and the chirp magnitude 6u> for a pulse under the influence 

of K^ distortion. The chirp rate increases until the pulse reaches the characteristic distortion 

distance, where it begins to decrease. The total chirp magnitude asymptotically approaches 

the frequency span of the pulse. 
AS-94-750 

As seen in Fig. 5.11, the chirp slope reaches a maximum value of 2/TQ at z = zK. 
The overall magnitude of the chirp may be taken to be the difference between 
the local frequencies at the pulse head (at t = — r(z)) and at the pulse tail (at 
t — T(Z)). This frequency difference is 

I | */ZK 4 

Ul\t=r(z) - Ul\t=-r{z) 8<JJ 

[i + (*/**)2]1/2V 
As seen in Fig. 5.11, the chirp magnitude approaches an asymptotic value of 
4/Tö; i.e., it is limited by the range of frequencies available in the original pulse, 
which has a bandwidth of 4/r0. Indeed, this is the reason the chirp slope has 
an asymptotic value of zero. The chirp magnitude is limited by the frequency 
content of the pulse, but the degree of dispersive spreading is unlimited. 

It is interesting to note that the K^ pulse distortion problem and a 
very well known problem in the theory of the propagation of highly collimated 
acoustic beams are isomorphic. When transformed into the retarded time frame 
r = t — z/cg), Eq. 5.37 becomes 

da      7   o\d2a 
dz + 2K°   Or* 

= 0. 
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The wave equation that describes the propagation of time harmonic waves from 
a highly directive axisymmetric source is the so-called paraxial wave equation 

dp      j d2p = 

dz     2kdr\ 

where the radiation is directed along the axial coordinate z and r± is the 
transverse or radial cylindrical coordinate. The paraxial approximation is valid 
provided the beam is highly collimated. In other words, the angular spectrum 
of the acoustic beam must contain only a narrow band of spatial frequencies, 
just as the pulse must contain only a narrow band of temporal frequencies. 
The dispersive distortion of the pulse is analogous to the diffraction distortion 
of the beam profile. A beam that radiates from a source of characteristic size 
r0 propagates as a collimated beam out to the Rayleigh distance zK = \krl, 
where diffraction first has a significant effect on the beam profile. Up to the 
Rayleigh distance the beam profile changes little and the amplitude is nealy 
constant. Beyond the Rayleigh distance, the beam spreads and the amplitude 
drops. The Rayleigh distance is clearly the characteristic distance associated 
with diffraction. In a precisely analogous manner, we have shown that the pulse 
propagates essentially without distortion out to a distance of z£2) = | (l/«0 )r$, 
where dispersion first has a significant distorting effect on the pulse. Beyond 
z^ the pulse spreads and decays, just like the beam. 

5.3.3    a^ Attenuation Distortion 

In the case that the smallest characteristic pulse distortion distance 
is z£> (the attenuation distortion distance of lowest order), we may consider 
the evolution of a pulse under the influence of the pulse distortion terms as- 
sociated with the distance z^ only. In other words, we restrict the distance 
of propagation of the pulse to distances such that z <C |z£n)| for all n > 2 and 
z «C \z^\ for all n > 2. We do, however, allow propagation up to and beyond 
the distance z£\ Again, we may solve for the evolution of an initially Gaussian 
envelope to identify the characteristics of a(1) distortion. It is found that, in 
addition to some other distortion effects, the pulse is subject to a "shifting 
carrier frequency" effect. At any particular value of z, the carrier frequency is 
uniform throughout the pulse (i.e., there is no chirping), but shifts as the pulse 
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propagates. To the author's knowledge, these distortion characteristics have 

not before been identified. 

With the exclusion of all but the first attenuation distortion term, the 

envelope wave equation becomes 

da      I da      . mda 

OZ      Cgo ot ot 

The corresponding envelope evolution integral is 

a(z,t) = ±- [+°°MW^'e-^e-^dn, (5.43) 

and the effective dispersion relation is 

q(u>) = K0+ j«o + «o1}(^ - wo) + jdoHv ~ Wo)- (5-44) 

We again consider the evolution of an initially Gaussian envelope (i.e., ao(t) = 

Coe_(t/To)2), in which case Eq. 5.43 becomes 

a(z,t) = — /"^CoTbTr^e-^^'c^^e-^'-'^dn. 
IT; J-OO 

As before, completion of the quadratic in Q, results in a Gauss-Presnel type 
integral, the solution of which is 

a(z, t) = C'oe-(t-z/^-J'ao1>z)3/T°. (5.45) 

With the introduction of the characteristic distortion distance z^ = r0/2a0 , 
the envelope function may be expressed 

a(z t) = C0e
_(t"2/c8°)2/Toe(2/22a)2e-'(2/'Zc")(t_z/'Cg<))'/TO, (5.46) 

where the superscript (1) has been left off of z^ for clarity. Again we see the 
appearance of the characteristic form z/za, and when z <C za we recover the 
distortionless solution. 

The AM distortion effects are investigated by consideration of the 
envelope magnitude 

\a{z,t)\ = C0e
{z/2z°)2e-{t-z/c*o)2/TZ. 
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The pulse propagates at the group velocity and is of constant duration, as 
in the case of the distortionless solution. The pulse amplitude differs from 
the distortionless solution by the quadratic exponential term. While the term 
appears to represent pulse amplification, it is, as is shown later, best explained 

in terms of FM distortion effects. 

The FM distortion effects are investigated by writing the pulse func- 

tion in the form 

pfz t\ _ (^oe-(t-z/cgo)2Aoe-ao[1-(V^)/^aao]zeje(z,t)) (5.47) 

where the phase function is 

6(z,t) = K0 

The local frequency is 

ui = 

KoTbCgo. 
UQ 

z/za 

OJQTQ 

dd(z,t) 
dt 

UJQ 1 - 
UJQTQ 

(5.48) 

which is independent of time; i.e., there is no chirping. At a given distance, 
the local frequency is constant throughout the pulse but shifts linearly with 
distance. The pulse appears as a strictly amplitude modulated carrier with the 
^-dependent carrier frequency 

Uc(z) = LL>O 
z/za 

COQTQ 

(5.49) 

The pulse solution, it turns out, may be expressed concisely in terms 
of dispersion parameters evaluated at the shifting carrier frequency uc(z). The 
value of the Bloch wave number at the carrier frequency is 

„(i) (l)o.,(D. q(uc) - q{uQ - 2a(
0 >Z/T£) = q(u0) - q(

0 
;2o^ >Z/T0 

r-, Z/Za     , . Z/Za   1 

=  Ko[l - ,.  _ ] +J«o[l CgoKoTo' '       2aoza 

and the full pulse solution may therefore be expressed 

p(z,t) = C0e (2/2^)2
e-(t-z/cgo)2/r0

2
eJ[l7(u;<:)2:-wct]_ 
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Aside from the unusual Gaussian attenuation term, the solution is well rep- 
resented in terms of the dispersion relation evaluated at the shifted carrier 
frequency. The attenuation term, however, may be explained in terms of the 
change in excitation level that occurs as the carrier shifts. Because the carrier 
frequency shifts linearly with distance and the pulse spectrum is Gaussian, the 
effective excitation at the carrier frequency decreases in level in a Gaussian 
manner as the pulse propagates. We have A0(u) — CoT07r1/2e_(a;To/'2)2, so that 
A0(uc - uo) = CoW2e-^2^\ or Coe'^2^ = A°^o). The pulse wave 
function may therefore be written 

The nondistorting pulse solution found in Sec. 5.3.1 is, for the Gaussian enve- 
lope boundary condition a(0,i) = C0e^T°^, simply 

=  M^O ~ <*>) c-(t-»/c.o)a/T2jMuaU-umt]^ 
Ton1/2 

The solutions are identical except that in the distortionless pulse solution, all 
frequency dependent parameters are evaluated at the initial carrier frequency 
UJQ and in the a0 distortion solution they are all evaluated at the current 
carrier frequency u>c. It is worth noting that the only frequency dependent 
parameter that is evaluated at the initial carrier frequency u0 instead of at 
the current carrier frequency uc(z) is the group velocity. This is because we 
have assumed that z «C |^2)|, which implies that the dispersion relation has 
effectively zero curvature over the pulse bandwidth (see Eq. 5.44). The group 
velocity associated with a dispersion relation with zero curvature is frequency 
independent. The group velocity evaluated at the shifting carrier frequency is 
equal to that evaluated at the initial carrier frequency. It may be anticipated 
at this point that if the dispersion had nonzero curvature, the shifting carrier 
frequency would be accompanied by a shifting group velocity, which would 
cause pulse acceleration. Such a possibility is considered in Sec. 5.3.4. 

The mechanism for the variety of pulse distortion effects found in 
Eq. 5.47 is most clearly demonstrated in the frequency domain. The envelope 
evolution integral (Eq. 5.43) may be written 

1      /-+0O r (l\     i 

a(z,t) = — A0(n)e-a°nz  e-jn(i-z/c^dü, 
IT: J-OO   L 
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Figure 5.12: The pulse spectrum at a sequence of distances for a pulse under the influence 

of a(1) distortion.  As the pulse propagates, the spectrum is filtered such that the spectral 

peak, and hence the pulse carrier frequency, are shifted down. F      ' AS-94-751 

in which form we see that the effective envelope spectrum at some value of z 
is A0(tye-a°)nz. The initial envelope spectrum is filtered by an exponential 
filter function that becomes progressively steeper as the pulse propagates. As 
the envelope spectrum is Gaussian, the effective spectrum is 

A0(n)e-a°)Q* oc e-^2n2e-a° Uz 

Kea(I'J2'e-(7D/2)'[n+te^/T0
J)Ji 

which, in spite of the progressive filtration, remains Gaussian at all values of 
z. The center frequency of the Gaussian, however, is shifted by an amount 
2a(1)/r0

2 or z/zarQ. We expect the pulse, therefore, to have a carrier frequency 
that is shifted linearly with distance, which is what we find in Eq. 5.48. When 
af,1} and therefore za are positive, the carrier is shifted down in frequency, 
and when a^ and za are negative, the shift in frequency is upward. In other 
words, the carrier frequency is shifted away from the more highly attenuated 
frequencies. At z = za, the carrier has been shifted by l/r0, or one quarter of 
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Figure 5.13: Normalized signals measured 0.8 m apart for a 1442 Hz, 12 cycle Gaussian 

pulse. It may be seen that the two signals go in and out of phase with one another as time 

advances. This is reflective of the change in carrier frequency after having propagated 0.8 m. 

AS-94-752 

the pulse bandwidth. An example of this shifting spectrum effect is shown in 
Fig. 5.12. The pulse spectrum is shown at intervals of z^/10 between z = 0 
and z = z$. 

The shifting carrier frequency effect is seen clearly in measurements. 
For a 1442 Hz pulse with a duration of 12 carrier cycles, the first several char- 
acteristic distortion distances are z^ = 1.07m, z^ = 3.23m, z^ = 40.4m, 
and z^> = 668m. Such a pulse should, up to a distance of about 1 m, be 
well described by the a^ distortion solution. In Fig. 5.13 is shown two of the 
measurements of the pulse taken 0.8 m apart, normalized and displayed on the 
same time axis. The difference in the carrier frequency may be seen by noting 
that the pulse carriers go in and out of phase with one another with time. In 
Fig. 5.14 is shown the measured local frequency at the pulse peak as a function 
of distance for such a pulse. The local frequency is found by FM demodulation 
of the measured pulse time series, as described in Appendix E. Also shown in 
the plot are theoretical values from Eq. 5.49. The carrier frequency, as pre- 
dicted by the theory, ramps away from the stopband frequencies, which are 
associated with strong attenuation.   While the data shown in Fig. 5.14 cer- 
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Figure 5.14: Theoretical and experimental values of the carrier frequency of a 1442 Hz, 12 

cycle Gaussian pulse at a sequence of distances. The carrier shifts down in frequency as the 

pulse propagates. 
AS-94-753 

tainly seem to verify the shifting carrier frequency effect conclusively, the same 
trend in the data could come about as an artifact of dispersive chirping. The 
chirping could be such that local frequency at the pulse peak shows a monotonic 
decrease with distance, but the frequency of the pulse as a whole shows no such 
decrease. In Fig. 5.15 is shown the local frequency as a function of time for 
the pulse at the sequence of distances. It is seen that the frequency shift does 
indeed occur across the pulse and is not simply an artifact of chirping. While 
there is a degree of dispersive chirping (no chirping would be indicated by a 
time-independent local frequency), it is clear that there is a net decrease in the 
local frequency as the pulse propagates. 
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Figure 5.15: The local frequency as a function of time for a Gaussian pulse of carrier 

frequency 1442 Hz and of 18 cycle duration. While there clearly is evidence of dispersive 

chirping (the local frequency is not constant), the net frequency of the pulse as a whole does 

indeed shift down in frequency with distance. The circles indicate the location of the peak 

of the pulse. 
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5.3.4    a(1) • K
(2)
 Distortion 

In each of the previously considered cases, the envelope distortion due 
to a single distortion term was considered. The K

(2)
, a(1), and a(2) distortion 

terms have each been considered independently. Here, the combined effect of 
the a^ and the K

(2
^ distortion terms is considered. 

With the exclusion of all but the o;(1) and the K
(2)
 distortion terms, 

the envelope wave equation becomes 

da      Ida        mda     i j2)d^a=0 

d~z + Cg0 dt +Ja°   dt+2Ko  dt*     U- 

The corresponding envelope evolution integral and dispersion relation are 

fl(z> t) = ± [+°° A0(u)e?#)*ei^Mt*'e-eP°>e-'m<Kl (5.50) 
27T J-oo 

and 

q{uS) = K0+ ja0 + K
{
O\UJ - Uo) + joS\u - u0) + \K£\U - u0)

2, 

respectively. For the case of an initially Gaussian envelope, Eq. 5.50 becomes 

2lT J-OO 

which may be integrated to result in 

a(Z^) = 7. „.   (2)     ,   o^/oeXP 
Co I    (t - z/c& - jap }z) 

[1 - 2i42)^/r0
2]1/2        I     r0

2(l - 2j^z/^) 

With the introduction of the distortion distances _42) and z£\ which are here 
abbreviated as zK and za, respectively, the envelope solution becomes 

_     't-z/cg0\
2     (t-z/c#\    (z/zQ)(z/zK)   _       (z/za)2 

•exp     U     ^{z)    J   +y    T{Z)    J[1 + {Z/ZK)2]1/2     4[1 + (^K)
2

] 
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(t-Z/Cgp\ (z/Zq) _    (Z/Zq)2(z/ZK)   \ 
+ \    r(z)    ) [l + (zM*\W     4[1+ («/*„)»]/' 

where, again, r(z) = r0[l + {z/zK)2]l/2. 

The AM distortion effects are found by consideration of the magnitude 
of the envelope 

\a(z,t)\ = C(z)eM2")2e^t-'^e^-c^)'^^T^\ 

where C(z) = CQ[1 + (z/zK)2]-1/4. The pulse envelope remains Gaussian, has 
a duration given by r(z) (i.e., it spreads after it reaches zK), has an amplitude 
given by C(z) (i.e., it decays after it reaches zK), and propagates at a group 
velocity that differs from cgo = 1/K^\U0), the group velocity associated with 
the initial carrier frequency CJ0- The modified, ^-dependent group velocity may 
be written 

c  (z) = ^  c&yz) (i)    / ,   v- 

In other words, the pulse accelerates or decelerates as it propagates! 

The FM effects are again investigated by expressing the pulse function 
in the form 

pc(z1t) = \a(z,t)\e-aoZej^z't\ 

where the phase function is 

9(z,t) = K0z - u0t + ^tan-\z/zK) - [Jz^j   (*/*«) 

(t-z/c#\ (z/za) (z/za)2(z/zK) 
+ \    T(Z)    J[l + (z/zK)2y/2+4[l + (z/zK)2Y 

and the local frequency is 

w,(M) = ü* - ^(zM + 21—^{z/zK). 
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If we define the carrier frequency uc to be the local frequency evaluated at the 
envelope peak, then it is found that 

z/za 
0Jc{z) = ui(z,t)\t=z/dgr = w0 

TO 

which is the same shifting carrier frequency found in the a(1) distortion case. 
With such a definition of carrier frequency, we also find that the group velocity 

associated with the carrier frequency is 

Cgr(Wc) = l//C(1)(Wc) 

=  [K
W

((JJ0) + K,{2)(u0)(uc - ^o)]-1 = Cgr- 

The pulse propagates at the group velocity associated with the carrier fre- 
quency. The carrier frequency shifts as the group propagates, and the (fre- 
quency dependent) group velocity likewise shifts. The attenuation a and the 
spectral amplitude A0(u) may similarly be evaluated at the carrier frequency, 

and the pulse amplitude may be expressed 

\Pc(z,t)\ oc C(z)A0(uc - o;0)e-(-c)2e-[t-/CgrK)]VT(,)2. 

In this very concise expression for the pulse magnitude, all frequency dependent 
parameters are evaluated at the shifting carrier frequency uc{z). As the pulse 
propagates, the carrier frequency, amplitude, attenuation, and group velocity 

all shift. 

Like the shifting carrier frequency, the shifting group velocity is clearly 
evident in measurement. In Fig. 5.16 is shown the pulse envelope (AM demod- 
ulated pulse) for a 1440 Hz Gaussian pulse of 12 carrier cycle duration as 
measured at a sequence of cell centers. The acoustic pressure waveform mea- 
sured at each cell center is normalized to unit amplitude and AM demodulated 
as described in Appendix E. Each resultant envelope function is then placed 
at the position along the distance axis that corresponds to the measurement 
location to result in the characteristics plane view of the pulse propagation. In 
the early part of the pulse propagation, the pulse arrives at successive measure- 
ment ports nearly simultaneously, which indicates a very large group velocity 
(as is expected of a stopband frequency pulse). After about a half meter of 
propagation, however, a substantial interval of time lapses between the arrival 
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Figure 5.16: The envelope of a Gaussian pulse of carrier frequency 1440 Hz and of 12 cycle 

duration as measured at a sequence of cell centers. The envelopes are normalized to unit 

amplitude and arranged according to their measurement locations to result in the charac- 

teristics plane view of the propagating pulse. Each envelope peak is encircled to show the 

trajectory of the pulse peak in the space-time plane, which is that of a decelerating pulse. 
AS-94-755 

of the pulse at successive measurement ports. This interval of time gradually 
increases as the pulse propagates, which indicates a gradual deceleration of the 
pulse. 

5.4    The Recovery Operations 
In this section we consider the Bloch wave pulse that is recovered 

from the solution of the analogous conventional wave problem. In other words, 
we turn the investigation from one of the macrostructures of the Bloch wave 
pulse to one of its microstructures. We first find more useful forms of the 
recovery operations found in Sec. 5.1.3. While those recovery operators show 
that the recovery operator method is indeed a valid approach to the solution 
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of the Bloch dispersion integral, they are here cast in much more useful forms. 
It is shown that the operators may be expressed such that (1) they act on the 
envelope function instead of the full pulse function, and (2) they are in the form 
of a differential operator. The full Bloch wave pulse solution may therefore be 
expressed simply in terms of the envelope solution and its derivatives. 

For each of the three representations of Bloch wave functions, the 
recovered Bloch wave pulse appears in the form of a series. In addition to 
the exact expression for the recoverd Bloch wave pulse, then, approximate 
(i.e., truncated series) expressions are also found. In the quasiperiodic and 
traveling wave spectral representations the Bloch wave pulse is found to be, to 
leading order, simply the carrier frequency time harmonic Bloch wave function 
modulated by the envelope function. In the convolution representation a similar 
(though not identical) result is found to leading order, and the first higher order 
correction is found to take the form of a simple modification to the f-wave/g- 
wave makeup of the pulse. 

5.4.1     The Quasiperiodic Recovery Operator 

In the quasiperiodic representation, the Bloch wave pulse may be 
expressed 

PCM) = TT f °°^Q(z,u)Pc(z,u)e-jutcLj 
ZlT J-oo 

= ertws-wot)!   [+™ <$>g(Z)U)A0(uj - u0)e
jQi"-"o)ze-jiu,-wo)tdu 

2lT J-oo 
I        r+oo 

= ei(qoZ-ÜJot)^- /      <S>q(z, tuo + tyAoityeJQ^e-^dtt 
2ir J-oo 

= e><«>z-uo%(z,t)*ta(z,t), 

where <f>g(z, t) = ^ / $q(z,u0 + Q)e~iQtdQ. The recovery operator that acts on 
the envelope function is therefore 

e^°*-w°t>0,(*It) 't ■ 

The operator is made more useful by expressing it in differential form. 
The periodic modulation function $q(z,u0 + fl) may be Taylor expanded about 
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Q = 0 to yield 

^(^wb + «)ln~o = E^fB)(^^)"m. 

where $Jm)(*, "o) = dm$q
m)(z, u0 + n)/dSlm       . The function $q(z} t) may be 

expressed as 

J-oo     m 

am 

and the recovery operator becomes the differential operator 

ei(^)^S^)(Z)Wo) 

m 

dr 

dtr 

When the recovery operator acts on the envelope function, the recov- 

ered Bloch wave pulse is 

p(z,t) = a(M)<M"^o)ej(9oZ-"ot) + jaM)^,^)^-^ + ■ • • 

= a(2)0<M^o)ej(90*-'Jot) 1+J 
f>W(z,a;o)ä(2r,t) 

$,(z,Wo) a(z,*) 
+ 

where ä represents the partial differentiation, with repect to time, of the enve- 
lope function. The leading term in the series is 

p(z,t) = a(zit)*q(z,u0)eK'«>z-uot) = a(z,t)F(ztuJo)e-iuot, (5.51) 

which is simply the time harmonic Bloch wave function at the carrier fre- 
quency, modulated by the envelope function. To this degree of approximation, 
the recovery operator is simply the multiplicative operator F(z,u0)e'

ju'ot. For 
narrowband pulses, the a/a term is small on the scale of u0. While this would 
tend to support the validity of the truncated series, we must investigate the 
magnitude of the <frq

l)(z,Uo)/$q(z,u0) term to be certain. In the interest of 
conciseness, the effect of the higher order terms in the series is investigated for 
the convolution representation of the recovery operator only. 
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5.4.2    The Traveling Wave Spectral Recovery Operator 

In the traveling wave spectral representation, the Bloch wave pulse 

may be expressed 

zir J-oo   n 

~ 2n J-oo 

= yej[(9o+2W^-^o*]_L [+°°cn(u0 + n)A0(n)ejQ{n)ze-jntdn 
~ 2lT J-OO 

= ^[(^W^-M^) *ta(z,t), 
n 

where Cn(t) = J Cn(u0 + fi)e_jntdft/27T. The envelope operator form of the 

recovery operator is therefore 

Yte^
qo+'**nlh)'-uat]cn(t) *t. 

n 

In order to find the differential form of the operator, we Taylor expand 
the traveling wave spectral amplitude function Cn(u0 + Q,) about tt = 0: 

m 

where C*"0 (<«*>) = dmCn(u0 + ^)/dflm\n=0. The function c^(i) may therefore 
be expressed 

CnW = i rZ£Am)M(-jnre-^dn 
J-oo     m 

ßm 

and the recovery operator becomes 
ßm 

n m Ul 

When the recovery operator acts on the envelope function, the recov- 
ered Bloch wave pulse is 

p(z,t) = Y,ej^0+2™/h)z-^ \Cn(uJo)a(z,t) + jC^Mä(z,t) + • ■ 

= a(z, t) Y. Cnmej[(,,+2,n/h)"U0'1 1       <%Huo)ä(z,t)  | 

Cn(wo) a(z,t) 
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The leading term is 

n 

= a(z,t)F(z,u0)e-jWot, 

which is, as in the case of the leading term in the quasiperiodic recovery of the 
Bloch wave pulse, simply the time harmonic Bloch wave function at the carrier 
frequency, modulated by the envelope function. Each traveling wave spectral 
component is of the form a{z,t)eMqo+2™lh:)z-w°t\ i.e., the Bloch wave function 
is composed of pulsed traveling wave spectral components. It is of interest to 
note that when z is much smaller than all characteristic distortion distances, 
half of the components of the traveling wave spectrum are of the form 

ao(* - z/cgo)C-inle
JH2nn/h-^z-lJotl 

We see explicitly that the "backward wave" behavior of the traveling wave 
spectral components of Bloch waves occurs in Bloch wave pulses as well as 
in time harmonic Bloch waves (see Sec. 3.31). The group travels in the +z 
direction and the phase travels in the -z direction. 

5.4.3    The Convolution Recovery Operator 

Before we proceed to find an expression for the recovery operator 
in the convolution representation, it is worthwhile to consider the Bloch wave 
pulses that are recovered by use of the quasiperiodic and traveling wave spectral 
recovery operators. In both of those cases it is found that, to leading order, the 
Bloch wave pulse is given by p(z, t) = a(z, t)F(z, u0)e-j"ot. The pulse is simply 
the time harmonic Bloch wave of frequency u0 modulated by the envelope 
function a(z,t). This result, expressed in the convolution representation, is, in 
the nth cell, 

1 
p(z,t) = a(z,t) -e J[ko(z-nh.)-u>ot] 

i + g/fM 

e>Qonh. (5.52) g/fi^o)      pj[-ko(z-nh)-w0t} 

1 + 9/fM 
eJ 
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The / and p-wave components of this approximate solution are readily identi- 

fied as ., 
f{z,t)-a{z,t)l+g/fMe 

n(v t\ _ nl9 f\     9/fM     ^joonh j\-ko(z-nh)-u>ot] 

where p(z, t) = f(z, t) +g(z, t). In the nth waveguide section, then, this solution 
predicts the /-wave amplitude to be proportional to a{z,t)e^z-nh)-Woi]. Such 
a result is not generally expressible in the form f(z,t) = f[t - (z - nh)/co], 
and is therefore not a valid waveguide-type solution. In other words, the ap- 
proximation made in the truncation of the two preceding representations of 
the Bloch wave pulse yields an approximate solution that does not represent 
valid waveguide-type wave propagation. It is shown here that the analogous se- 
ries truncation in the case of the convolution representation of the Bloch wave 
pulse results in an apporoximate solution does exhibit valid waveguide-type 
behavior. In other words, the / and g waves may be expressed in the form 
f(Z) t) = f[t -(z- nh)/co] and g(z, t) = g[t + (z - nh)/co], respectively. 

In the convolution representation, the Bloch wave pulse may be ex- 

pressed 

I       r+oo . 

I'K J-oo     n 

~ 2-n J-oo 

= $(z,t) *z *tXy(9on,l-Wot)<5(z - nh)a(z,t), 
n 

where $ = Jip{z,u0 + Ü)e-jntdü/2TT, and the multiplication of a(z,t) by the 
lattice precedes the convolutions. The envelope operator form of the convolu- 

tion operator is therefore 

$(z,t) ** HY.e^^-^Siz - nh). 
n 

In order to simplify the derivation of the differential form of the convolution 
recovery operator, we make an approximation in the expression for tp(z,u). 
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While the approximation is not necessary, it greatly clarifies the procedure. 

We have , , ,, , 
e*»)* + g/f{u)e->M' 

^Z'U) = —TT^TTM—()' 
where R(z) = H(z + h/2) - H(z - h/2) is the rectancular function and 
H(z) is the Heaviside or unit step function. It is assumed that k{u) ~ 
U/CQ + jlm{k(u0)}. In other words, the / and g waves are assumed to prop- 
agate without dispersion and with the dissipation associated with the carrier 
frequency. This assumption is justified as the amplitudes of the / and g waves 
are known at the cell centers, and we need only determine the field at points 
a maximum distance of h/2 from the cell center. The error accumulated over 
such a small distance is, with the exception of cases of extremely large attenua- 
tion and pulse bandwidths, extremely small. Using the approximate expression 
for the wave number, the cell wave function may be expressed 

^'"0 + fi) = l + g/ffa + n) R{z)' 

and therefore 
i> = R{z)ejkoz— [+°° Lf(^)e-jn{t-z/co)dQ 

27T J-oo 

+ R(z)e-jkoz^- [+°° Lg(tye-jn{t+z/co)d£l, (5.53) 
Z7T J-oo 

where 

L'{n) = i + g/fto + si)      and      L^\ + 9/nu0 + ny 

We may now proceed to find the differential form of the recovery 
operator. Expansions of Lf(Q) and Lg(Q) about fl = 0 are 

Mn)ln~o = E ^4m)(°)Qm      and      L^)l^o = E ^4m)(o)^, 
m m 

where L{™\0) = dmLf(Q)/dnm\n=0 and Lg
m\0) = dmLg(Q)/dnrn\n=0.   The 

substitution of these expansions into Eq. 5.53 yields 

i,(z,t) = R(Z)^Z~ f^Y.^^m-j^re-^-^dü 
L~K J-oo     m 
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Z7T J—oo     m 

{am 

firn } 

The recovery operator in differential form may therefore be written 

{am fim "I 

*2*iEeJ(9on'l"u'o)t<5^-n/i)- 
n 

When the recovery operator acts on the envelope function, we have 

jm 

Yf\ I'll* \J V 

+eJ[-ko(z-nH)-u0t] £ ^L(m)(())^_a(n^) t + (z _ nh)/co) 

m 

R(z — nh). 
5m 

m!~9   '"'di™ 

The exponential term before each sum in the square brackets makes it evident 
that the first sum represents the / wave and the second the g wave. In the nth 

cell, therefore, the / and g waves are given by the series 

„m Qm 

f(z, t) = eiMz-nh)-u0t] £ J_^L<p)(fy"a(nht t-(z- nh)/co)e?qonh 

-yi flit 0/6 

jm m ßr, 
g(z,t) = ert-ko(z-nV-"ot} y J   L{rn)^\^_a(jlh) t + (z - nh)/co)ejqonh. (5.54) 

m m\   g   v 'dtr 

We now consider the leading order terms in the series representation 
of the recovered Bloch wave pulse. In the nondissipative case, the leading term 
in each series represents, in the nth cell, an / wave-g wave field given by 

g-j'wo(t-(z-n/i)/co) /(*, t) = e^nha{nK t - (z - nh)/c0)l +g/fM 

g(z, t) = ejqonha(nh,t+ (z - nh)/co)   9^^J
e°)    e-*"o(«+(*-"'0A*). 

1 -f g/f{uJo) 
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Note that this approximate field is not equal to a{z,t)F(z,uo)e~jwoi (i.e., that 
shown in Eq. 5.52). In particular, the wave behavior in the waveguide sections 
is of the form f(z,t) = f(t - (z - nh)/co) and g(z,t) = g(t + (z - nh)/co), 
which represents valid waveguide-type wave behavior. In other words, the 
series trunction leads, in this case, to an approximate solution with valid wave 
behavior in the waveguide sections. The / and g waves are modulated such 
that at the cell center they are given by 

1 j[q0nh-w0t] f(nk,t) = a(nh,t)1+g/fM 

g(nKt) _ a(nM)T^M_e*—,. 

The / and g waves are simply counterpropagating conventional wave pulses 
with the same envelope function as the Bloch wave pulse. The relative am- 
plitude of the / and g wave pulses is, at the cell center, that of the carrier 

frequency time-harmonic Bloch wave. 

To investigate the influence of the higher order terms in the series, 
we consider the / and g wave envelopes. At the center of the nth cell, these 
envelope functions are, from Eq. 5.54, given by 

3m 

af(nh, t) = c*"* £ L4m)(°)^a(^> *) m\   }        dtr 

jm 

ag(nh,t) = e^hZ^\0)—a(nh,t). 

With the inclusion of up to the second terms in the series, the envelope functions 
may be written4 

a/(nh, t) = a(nh, t)L/(0) exp 
L{f\0)ä(nh,t) 

1 L/(0) a(nh,t) 
e3Qonh 

4The approximation made in expressing the wave envelopes in this representation is of 
; same order as that made in the truncation of the series: J2n(Je)n = 1 + Je + C(fi2) = the same order as 
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ag(nh,t) = a(nh,t)Lg(0)exp 
L^(0)ä(nh,t) jQo^h 

Lg(0) a(nh,t) 

If nh is less than the smallest of the characteristic distortion distances, then we 
have a(nh, t) = ao(t-nh/c&). Hao(t) is the Gaussian function a0(t) = e-

(t/To) , 

then the envelope functions are given by 

af(nh, t) = ac(t- z/c&)Lf(0) exp 

ag(nh, t) = a0(t - z/cgO)Lg(0) exp 

-J 
L{}\0)2(t-nh/c&) J3 
L,(0) To2 

,ffl(0)2(^-n/i/cgo) 
3 Lg(0) r2 r0 

To leading order in the series it was found that the / and g wave envelopes 
are simply that of the Bloch wave at the cell center. Here we see that the next 
term in the series introduces a time dependent phase modulation. Such a phase 
modulation simply causes a frequency shift in the / and g waves: 

■(i) /,}I;(0) 2 
u' = Uo + TJ<p) Wo - 

9/ti (i) 

1 + g/fo r0
2 

uq = u0 MO) rS 
= ^o + 9/ti 

(i) 

S//O(1 + <?//O)T0
2 

Shown in Fig. 5.17 is a plot of these frequency shifts as functions of carrier 
frequency for the case of a pulse with eight carrier cycles over the characteristic 
pulse duration 2r0. Away from the stopbands, the shifts are small, which 
implies the validity of the truncated series. Near the stopbands, the frequency 
shifts become large and the validity of a truncated version of the series is 

doubtful. 
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Figure 5.17: The fractional shifts in frequency of the / and g waves as a function of carrier 

frequency for an 8 cycle Gaussian pulse. 
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Chapter 6 

Asymptotic Pulse Propagation 

In this chapter we consider the propagation of Bloch wave pulses in 
the limit as the propagation distance z becomes large. We concentrate on the 
asymptotic solution of the conventional wave dispersion integral associated with 
the analogous conventional wave problem in order to find the macrostructure 
of the Bloch wave pulse in the large z limit. While it is not done here, the 
full Bloch wave pulse solution may readily be recovered from the solution of 
the conventional wave dispersion integral with the use of one of the recovery 
operators found in Chapter 5. We first consider the case in which dissipative 
mechanisms are absent and later consider the effect of dissipation. 

The analysis is composed of two parts. The first is the evaluation 
of the dispersion integral in the asymptotic sense and the second is the ap- 
plication of the results to the particular system under study. The asymptotic 
evaluation of the dispersion integral has been performed using a variety of tech- 
niques (Whitham, 1974; Lighthill, 1980). Most of the previous work has been 
directed at the solution of the dispersion integral associated with the initial 
value problem 

p(Zit) = -!- f+0°A(k)ej^-^k)tkk 
2TT J-OO 

for large values of t as opposed to that associated with the boundary value 
problem 

p(z,t) = -*- [+°°A(u)ej^z-^dw 
2ir J-oo 
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for large values of z, which is that solved here. Owing to the similarity of the 
two integrals, however, the solutions are very simply related. 

The asymptotic integration method used is the stationary phase tech- 
nique. While the method of steepest descent and the asymptotic Fourier inte- 
gral approach are both valid alternative approaches and are both better suited 
to the determination of the degree of error in the asymptotic approximation 
(Whitham, 1974), such errors have been examined extensively (Lighthill, 1980) 
and the validity of the results firmly established. That work having been done, 
the method of stationary phase is chosen for its relative simplicity. 

The second part of the analysis is the application of the results of 
the asymptotic integration to a system with Bloch wave dispersion. The ap- 
proach is based on the fact that the passband portions of the Bloch dispersion 
curve have a highly characteristic form. A number of characteristics that are 
common to every passband turn out to be important in the determination of 
the asymptotic form of the pulse. We are therefore able to determine several 
substantial characteristics of the pulse at large z for a wide variety of initial 
pulses. In particular, we are able to determine: 

• The functional form and arrival time of the leading edge of the pulse. 

• The qualitative form of the "body" of the pulse. 

• The functional form of the tail of the pulse, and whether the pulse remains 
localized or develops a long tail. 

The specific integral to be solved for large z is defined as follows. As 
the problem under consideration is nondissipative (the effect of dissipation is 
considered in Sec. 6.5) we have q(u) = K(UJ) in the passbands and q(u) = 
rar + ja(u), where n is an integer, in the stopbands. We consider the source 
spectrum to be the sum of the two disjoint spectra Apb(u;) and Asb(w), which 
are nonzero only in the passband and stopband, respectively. As the waves 
that arise from stopband frequencies are exponentially localized to the vicinity 
of the source and do not contribute significantly to the asymptotic field, the 
contribution to the asymptotic field by Asb(w) is negligible.   The dispersion 
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integral to be solved is therefore 

1    r+°° 

Z7T J-oo 

where q has been replaced by K because they differ only in the stopbands, where 
ApbM = 0. With the definition of the phase function d(u, z, t) = K{U)Z - ut, 

the dispersion integral becomes 

1       r+oo 

P(ztt) = —f     A(w)e"<w*'>dwf (6.1) 
Z7T J-oo 

where the "pb" subscript has been dropped from Aph(oj) with the understanding 
that, from this point on, we are concerned only with the passband portion of 
the source spectrum. 

It is assumed for the time being that the passband source spectrum 
A(u>) is a real function. The results are generalized to include complex source 
spectra in Sec. 6.3. The restriction that this assumption imposes upon the 
source function itself is that the magnitude of the envelope function must be 
symmetric about t = 0 and the phase of the source function (and therefore the 
phase modulation of the carrier) must be antisymmetric about t = 0. Another 
interpretation of the phase restriction is that the local frequency associated 
with the source function (and therefore the frequency modulation of the carrier) 
must be symmetric about t — 0. In other words, both amplitude and frequency 
modulation of the carrier must be symmetric about t = 0. 

6.1    The Stationary Phase Approach 
The stationary phase approach to the solution exploits the fact that, 

for large values of z, the exponential term in the integral is an extremely rapidly 
oscillating function of frequency. The oscillation rate is 39/du = z(dK/duj) — t, 
which increases linearly with z and may therefore be made arbitrarily large by 
imposing the requirement that z be arbitrarily large. If the source spectrum 
function A(a>) changes only negligibly over a range of frequencies in which the 
argument of the exponential function increases (as a roughly linear function 
of frequency) by 2ir, then the integral over that range of frequecies is itself 
negligible.   It appears, then, that the entire integral becomes trivial.   Note, 
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however, that the oscillation rate becomes zero when K
W

(U)Z = t. When 
z is large the oscillation rate is very large except in the near vicinity of the 
frequencies where K^(U)Z = t. The integral is therefore negligible except in 
the near vicinity of the set of frequencies u = usp{z, t), given by the expression 

K^(usp)z = t, (6.2) 

where the phase function is stationary. These are the so-called stationary 
phase frequencies.1 The frequency intervals in which the integral is non-trivial 
are called the stationary phase regions (each stationary phase frequency is 
encompassed by a stationary phase region). As z increases, each stationary 
phase region shrinks in size until the integral is negligible everywhere but in 
the very near vicinity of the stationary phase frequencies. We may therefore 
simply solve the integral in the vicinity of each stationary phase frequency and 

sum the results. 

While the portions of the integrand that lie in the stationary phase 
regions certainly make the most significant contribution to the total value of 
the integral, we must also consider a second set of frequencies. As is shown in 
Sec. 6.3, for a given distance z there is a critical time tc before which the phase 
function d(u, z, t) increases monotonically with frequency and is not stationary 
at any frequency. In other words, Eq. 6.2 has no real solutions for t < tc. During 
this pre-critical time interval, the dominant contributions to the integral arise 
from the spectral regions in which the phase advance rate is most gradual (i.e., 
most nearly stationary). These frequencies, referred to here as the gradual 
phase frequencies, are those at which the phase rate K

W
(U)Z -1 is a minimum: 

K
(2)
KP) = 0. (6.3) 

An example of the form of the phase function at pre-critical, critical, and 
post-critical times is shown in Fig. 6.1. During the pre-critical time interval 
0 < t < tc, there is only the single gradual phase frequency. At the critical 
time, the gradual phase frequency becomes a stationary phase frequency, which 

^ote that the stationary phase frequency condition may also be written t = z/csr(oJsp). 
The stationary phase frequency is that which relates t and z through the group velocity. 
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then splits into two. During the post-critical time interval the two stationary 
phase frequencies migrate away from one another. During the pre-critical time 
interval, we evaluate the dispersion integral only in the vicinity of the gradual 
phase frequencies given by Eq. 6.3, and during the post-critical interval, only 
in the vicinity of the stationary phase frequencies given by Eq. 6.2. 

£<s:t 

HP   " 

t<t t = L t>L i»t 

^sp  WSp 

Figure 6.1: The phase function 6(w, z, t) at times less than, equal to, and greater than 

critical. Prior to the critical time, there is only a single gradual phase frequency. At the 

critical time a stationary phase frequency first occurs, and at later times there are two. 

AS-94-757 

The first problem is therefore to determine the solution of the dis- 
persion integral in the vicinity of an arbitrary stationary or gradual phase fre- 
quency. The second problem is to determine the dependence of the stationary 
and gradual phase frequencies on z and t. Owing to the characteristic features 
of the Bloch dispersion we are able to identify a general qualitative form for 
the dependence of Ugp and usp on z and t. We are then able to find several 
explicit expressions, each valid in a particular spectral range, for the stationary 
and gradual phase frequencies. Depending upon how the source spectrum is 
situated with respect to these spectral ranges, we are able to determine the 
functional form and arrival time of the leading edge of the pulse, the character 
of the body of the pulse, and whether the pulse remains localized or develops 
a long oscillating tail. If such a tail develops, we are able to determine the 
functional form of the tail. 



136 

6.2    The Stationary and Gradual Phase 
Solutions 
The object of this section is to find the solution of the dispersion in- 

tegral in the vicinity of arbitrary stationary and gradual phase frequencies. As 
the only significant contribution to the dispersion integral occurs in the very 
near vicinity of these frequencies, we may safely represent all frequency depen- 
dent terms in the dispersion integral as Taylor expansions about the stationary 
or gradual phase frequency. As the stationary and gradual phase regions over 
which the dispersion integral is nontrivial shrink as z grows large, the errors 
incurred in the truncation of the Taylor expansions become arbitrarily small 

as z becomes large (Lighthill, 1980). 

6.2.1    The Stationary Phase Solution 

The frequency dependent terms that appear in the dispersion integral 
are the source spectrum A(u) and the phase function 6(u,z,t). We expand 
these functions about the stationary phase frequency to result in2 

A(w)UWip = ABP + A^-WSP) 

OK 2,*)Uo,sp  = Asp + £«<?(«, - Usp)
2Z, 

where the subscript "sp" denotes the evaluation of the function at u = usp 

and we have used the identities 6$ = 0 (the definition of the stationary phase 
frequency) and 0(2) = n{2)z. When these expansions are substituted into the 

dispersion integral (Eq. 6.1), it becomes 

p(z,t) = A(w8p)e>"0-»^- [+°°e^){"-"")2zdu 

Z7T J-oo 

2The order to which terms are retained in these expansions determines the degree of error 
incurred in the technique. It is shown in the literature (Lighthill, 1980) that for the series 
truncations shown, the errors become arbitrarily small as z becomes large. 
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The integrand of the second integral is odd, and therefore integrates to zero, 
and the first is a Gauss-Fresnel type integral which is readily evaluated. The 

result is 

We may use «(2)(wsp) = |«;(2)(^sp)|sgn[«;(2)(a;Sp)], where sgn(x) is the signum 
function, to rewrite the result 

n(y   +\ - A(o;Sp) jHu>SD)z-u>BDt]   -jfsgn[/c(2)(w.p)l to  A} 
P{Z't}- (2n\KW(uap)\zy/*e ■ [*A) 

This solution is the standard stationary phase solution of the dispersion inte- 
gral, but in boundary value problem form. In the usual initial value problem 
form (Whitham, 1974; Lighthill, 1980), the solution is parameterized by the 
stationary phase spatial frequency ksP(z, t) instead of the stationary phase tem- 
poral frequency cjsp(z, t) seen above, and the dispersion relation and its deriva- 
tives reflect the inverted dependence u = u(k) instead of K = K(O>), as seen 
above. 

It is interesting to note that the local frequency of the received signal 
at a particular time is related to the propagation distance z by the group 
velocity. The phase of Eq. 6.4 is 

8(u,z,t) = K[ujsp{t)]z - usp(t)t - j(7r/4)sgn{«(2)[^sp(i)]}, 

and the local frequency is 

89 d^spr, , , v, 
Wj = —^ = WBp + -QJ-V ~ */CgrKp)]- 

At the time t = z/cgr(u)sp), then, the local frequency is simply 

^lt=*/Cgr(^) = <*V (6-5) 

6.2.2    The Gradual Phase Solution 

The solution of the dispersion integral in the vicinity of a gradual 
phase frequency is found in much the same way as that in the vicinity of a 
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stationary phase frequency.   The expansions of the source spectrum and the 
phase function about the gradual phase frequency are3 

AMU„gp = Agp 

0(u,z, t) U„gp = 0gp + *g> (to - u,gp)z + !«£> (u - Wgp)
szf (6.6) 

where we have made use of the fact that, by definition, K^ = 0. The substi- 
tution of these expansions into the dispersion integral (Eq. 6.1) results in 

p{z,t) = Aiugje*9'»^- f+C°ejK$iu-"->)zej«K®{"-"-»)3zduj.        (6.7) 

With the introduction of the frequency shift u = u - ugp and the subsequent 
frequency scaling (o = V(^K^Z)~

1/3
, Eq. 6.7 becomes 

p(z, t) =    A^p)   ^- r° e^3e^<^-U*»dv. (6.8) 

The integral is now the Airy integral (Jeffrey and Kawahara, 1982) and Eq. 6.8 
may be written 

(^(3)(Wgp)z)1/3 

K('1'(uJgp)z — t 

(i«W(Wgp)z)V3 
(6.9) 

where Ai(rc) is the Airy function. Again, Eq. 6.9 is the boundary value problem 
form of a standard initial value problem result (Lighthill, 1980). 

6.3    The Stationary and Gradual Phase 
Frequency Trajectories 
We now have solutions of the dispersion integral in the vicinity of 

arbitrary stationary and the gradual phase frequencies. Note that these solu- 
tions exhibit a parametric dependence upon the stationary and gradual phase 
frequencies.   The next step is to determine the values of these frequencies 

'Again, these series truncations are justified in the literature (Lighthill, 1980). 
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as functions of z and t. The substitution of the expressions for uap(z,t) and 
ugp(z,t) into Eq. 6.4 and 6.9, respectively, results in explicit expressions for the 
contributions to the received signal associated with each gradual and stationary 
phase frequency. 

6.3.1    The Stationary Phase Frequencies 

In spite of its simple appearance, the stationary phase frequency 
condition 

KW(usp)z = t 

generally results in stationary phase frequencies that cannot be expressed ex- 
plicitly in terms of z and t. One method of determination of the stationary 
phase frequencies that leads to a very substantial if only qualitative under- 
standing of their behavior is a graphical approach. To make use of the graphical 
approach, we consider the dependence of the problem on z to be parametric. 
That is, we consider the solution p{z, t) to be the signalp(t) that arrives at some 
fixed point z. We similarly consider the stationary phase frequency usp(z,t) 
to have the time dependence usp(t) for some fixed value of the parameter z. 
In this spirit, we write the stationary phase condition K^[usp(t)]z — t. The 
stationary phase frequency is simply a time dependent frequency that serves to 
map frequency to time. Equation 6.4 shows that the signal at time t is propor- 
tional to A[a;Sp(£)]e~J"'3p^1. Each frequency in the source spectrum is mapped 
to a particular time in the received signal. We may think of the stationary 
phase frequencies as migrating along the frequency axis "reading" the source 
spectrum. 

It is worth noting that the treatment of z as a parameter is consis- 
tent with the general nature of the boundary value problem. We are usually 
interested in the signals that occur at various, fixed values of z. The signal 
is generated at one fixed value of z (in this case, at z = 0), evolves as it 
propagates, and is received at another fixed value of z. 

The graphical approach to its solution makes use of the fact that the 
stationary phase condition may be rewritten 

d d  ( ^ -Lüt 

U> = U>gp 



140 

The stationary phase frequencies are those at which the slope of K(U)Z is equal 
to the slope of ut. Consider the functions K(UJ)Z and ut. As z increases, K(U)Z 

simply becomes an increasingly stretched version of the dispersion function. We 
then fix z at some value and allow t to sweep from t = 0 forward. The function 
ut is simply a linear function that pivots at the origin. As time increases, 
the initially horizontal linear function tips up. If at some particular time the 
slopes of the two curves are equal at some frequency, then that frequency is a 
stationary phase frequency. As time evolves, the ut curve tips farther up and 
the stationary phase frequency magrates up or down in frequency. 

Consider now the structure of the Bloch dispersion curve. Each pass- 
band is bounded by a pair of stopbands and has a single inflection frequency 
roughly midway between the two stopbands (see Fig. 3.1). The inflection fre- 
quency divides each stopband into a low frequency, negative curvature region 
and a high frequency, positive curvature region. As this dispersion structure is 
universal for any passband, we may determine the general trajectories of the 
stationary phase frequencies associated with Bloch wave dispersion. 

In Fig. 6.2 is shown K(U)Z and ut for a fixed value of z and successive 
instants of time near the critical time (note that the difference between these 
functions results in the type of phase fucnctions shown in Fig. 6.1). At t = 0, 
the slopes of K(U)Z and ut are equal across all stopband frequencies. While 
this implies that the dispersion integral is nonzero at some large z at t = 0 and 
is supportive of the infinite stopband group velocities found earlier (Sec. 5.3.1), 
we have already argued that these contributions are strongly attenuated and 
thus negligible for large z. As time advances and the function ut tips up, 
we see that the slopes of K(U) and ut first match at the inflection frequency, 
which is that associated with the largest group velocity in the passband. The 
earliest stationary phase frequency is therefore usp = vu which occurs at the 
critical time tc = z/cgi, where cgi = l//c(1)(u;i) is the group velocity associated 
with the inflection frequency. As time advances further, the single stationary 
phase frequency splits and becomes a pair of stationary phase frequencies on 
opposite sides of the inflection frequency. One of the resultant pair migrates 
up in frequency towards the high frequency band edge and the other migrates 
down in frequency towards the low frequency band edge. The migration is 
most rapid near the inflection point and slows as the frequencies split further. 
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Figure 6.2: The functions K(W)Z and ut at times less than (a,b), equal to (c), and greater 

than (d,e,f) critical. The points where the slopes of the two functions are equal (the encircled 

points) are the stationary phase frequencies. 

AS-94-758 
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As the slope of K{U)Z is infinite at the band edges, the pair of stationary phase 
frequencies only reaches the band edges as t -* oo. The migration paths of 
the stationary phase frequencies that occur in several passbands is shown in 

Fig. 6.3 

Figure 6.3: The direction of migration of the stationary phase frequencies. The circled 

points are inflection points, where the stationary phase frequencies originate. The arrows 

indicate the migration paths towards the band edges. 

AS-94-759 

6.3.2    The Gradual Phase Frequencies 
As was pointed out earlier, prior to the critical time no stationary 

phase frequencies exist and the dominant contributions to the dispersion inte- 
gral arise from the vicinity of the gradual phase frequencies. From Eq. 6.3 we 
see that the gradual phase frequencies are those for which K(U) has zero cur- 
vature. In other words, the gradual phase frequencies are simply the inflection 

frequencies 

In contrast to the stationary phase frequencies, the gradual phase frequencies 

are independent of z and t. 

The gradual and stationary phase frequencies for the isotropic peri- 
odic waveguide described in the introduction (with S/S0 = 1 and d/h = .14) 
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axe shown in Fig. 6.4. For each band there is a gradual phase frequency at the 
inflection frequency. At the critical time associated with a particular band, the 
gradual phase frequency bifurcates and becomes a pair of stationary phase fre- 
quencies that each migrate towards a band edge. If the source spectrum A(u) 
does not include the inflection frequency, then we may simply consider the sta- 
tionary phase frequency or frequencies that pass through the nonzero spectral 
region. If the source spectrum does include an inflection frequency, then the 
solution is composed of two parts: a pre-critical part that arises from the grad- 
ual phase frequency and a post-critical part that arises from the ensuing pair 
of stationary phase frequencies. 

2KCr 
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3 
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h 

.-.!>-- -->■-- 

«sfes 

ZTcMopharid 
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Hfc*^ 

Iglt 

3-z/cb 

Figure 6.4: The gradual and stationary phase frequency trajectories. At the critical time 

associated with each passband, each gradual phase frequency (shown as dashed lines) becomes 

a stationary phase frequency (shown as solid lines) and subsequently undergoes a bifurcation. 

Each of the resultant pairs of stationary phase frequencies then asymptotically approaches a 
band edge. 

AS-94-760 
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6.3.3    Complex Source Spectra 
The results thus far have hinged upon the assumption that the source 

spectrum is real; i.e., that the amplitude and frequency modulation of the 
carrier at the source is symmetric about t = 0. We now consider the case 
in which the source function is arbitrary, and the associated source spectrum 

consequently complex. 

For the complex source spectrum Ä(w), the dispersion integral to be 

solved is ,      +QO 

Z7T J-oa 

With the definition 

where A(w) is now the magnitude of k(u) and <j>{u) is the phase, the dispersion 

integral becomes 

p(Z}t) = J_ /■+0°A(w)eJ'Ww)+'c(w)z-wtIdc«;. 
llT J -OO 

We may now redefine the phase function 9(u, z, t) = 4>{u) + K{U)Z - tot, and the 
dispersion integral is identical to that shown in Eq. 6.1. The stationary and 
gradual phase solutions are, with the new definition of the phase function, still 
valid. The difference occurs in the trajectories of the stationary and gradual 
phase frequencies. The frequencies at which the total phase of the integrand is 
stationary and most gradual are dependent upon <f>(uj). The stationary phase 

condition 86 / du]^^ = 0 is now 

<j>w(usp) + KW(L;sp)z-t = 0, 

and the gradual phase condition d26/dui2\u=UJiP = 0 is 

^2)(a;gp) + K(2)(^gp)^ = 0. 

The stationary and gradual phase frequencies are modified by variations in the 
phase of the source spectrum. It is worth noting that in previous investigations 
of this sort, the contribution to the stationary phase condition by the source 
spectrum phase is neglected, but it is not stated that the source spectrum is 
assumed to have zero or constant phase. From this point on, only real source 

spectra are considered. 
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6.4    The Solutions 
We now find explicit expressions for the stationary and gradual phase 

frequencies so that the solutions, which depend parametrically on these quan- 
tities, may themselves be expressed explicitly in terms of z and t. While we 
cannot find globally valid explicit expressions for the frequencies, we are able 
to find expressions that are valid in a limited spectral range. The resultant 
solutions are then valid only over a limited range of time. 

6.4.1    The Fourier Transform Pulse Solution 

An interesting narrowband pulse solution is found when the pulse 
spectrum occupies a frequency range in which the dispersion curve has roughly 
constant (and nonzero) curvature. We see in Fig. 3.1 that a large fraction of 
the Bloch dispersion curve is such that this requirement is easily met. As the 
spectrum occupies a range of frequencies with nonzero curvature it does not 
include an inflection frequency and we need not consider the gradual phase 
frequency. In fact, we need consider only a single stationary phase frequency 
trajectory, and one that is simple enough that the dependence of o;sp on z and t 
may be expressed explicitly. This expression for usp may be substituted directly 
into the stationary phase solution to obtain a fully explicit solution. 

To arrive at an expression for the stationary phase frequency, we 
expand the dispersion relation about u = u0, the source carrier frequency. As 
the curvature of K(U>) is very nearly constant over the pulse bandwidth, we 
need keep terms to quadratic order only: 

«ML^. = «o + Ko  (w - wo) + -K{
O \u - uo)2. (6.10) 

The consequence of the presence of higher order terms is addressed in the 
following section. Differentiation of the expansion leads to 

KW(u) =41) + /42)(w-wb). (6.11) 

Using this expression, the stationary phase condition becomes 

[KO   + «o  (^sP - UQ)]Z - t = 0, 
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which may be rewritten as 

^sp^o + m^- (6-12) 
K0   Z 

In the interval over which the dispersion curve has constant curvature, the 
stationary phase frequency sweeps linearly with time. The sweep rate is de- 
termined by the magnitude of the curvature of the dispersion function (i.e., 
by |«o |) and decreases with z. As we expect from the qualitative analysis 
of Sec. 6.3, the sweep direction is determined by the sign of the curvature. 
A negative curvature indicates a downward sweep in frequency and a positive 
curvature indicates an upward sweep, as is found on the low and high frequency 

sides of the inflection frequency, respectively. 

In order to express the stationary phase solution (Eq. 6.4) explicitly 
in terms of z and t, we need, in addition to the expression for the stationary 
phase frequency, explicit expressions for K(USP) and K^(USP). Differentiation of 
Eq. 6.11 and evaluation of the result at the stationary phase frequency results 
in 

AC
(2)

(WSP) = 4
2)
. (6.13) 

The evaluation of Eq. 6.10 at the stationary phase frequency and the subsequent 
substitution of Eq. 6.12 into the right hand side results in 

,  {t/zf - (l/cgr)
2 

«(^sp) = «0 -\ (a) • (0.14) 

We may now write down the solution. Using the notation of the pre- 
vious chapter, the source envelope spectrum is AQ{LS) and the source spectrum 
is A(u) = Ao(u — u0). The substitution of Eqs. 6.12, 6.13, and 6.14 into Eq. 6.4 
results in the solution 

P{Z't}-(2n\^\zy/> A°{   K^Z   r ' 
The pulse envelope, which propagates at the group velocity associated with the 
carrier frequency, is the source envelope spectrum. In other words, the pulse 
envelope distorts into its Fourier transform! The pulse decays as l/y/z and, 
owing to the denominator in the argument of the envelope spectrum, spreads 
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out linearly with z. As was found in the analysis of Eq. 5.41, the quadratic 
term in the exponential function causes dispersive chirping of the carrier. The 
carrier frequency ramps linearly with time at a rate of 2-K/KQ 'Z HZ/S. 

It is interesting to consider this Fourier transform pulse solution in 
light of the isomorphism that was pointed out in Sec. 5.3.2. It was noted that 
the dispersive distortion of a pulse envelope and the diffraction distortion of 
the profile of a highly collimated beam are essentially the same problem.4 The 
pulse envelope loses amplitude and spreads in precisely the same manner that 
the beam profile loses amplitude and spreads. It is well known (Goodman, 
1968) that the asymptotic solution of the beam diffraction problem is that the 
beam profile distorts into the Fourier transform of the initial beam profile (i.e., 
the aperture function). While the pulse distortion solution is a strictly short 
range solution, the isomorphism appears to hold for long distances as well. 

6.4.2    The Half-Band Pulse Solution 

In this section the findings of the previous section are generalized to 
include the case of pulses that do not meet the bandwidth requirement of that 
section. In other words, we consider the consequences of the relaxation of the 
bandwidth limitation. The Fourier transform pulse solution is valid when the 
source spectrum is confined to a spectral region over which the dispersion curve 
has very nearly constant curvature. Here we consider a source spectrum that 
occupies any part of the spectral region between the band edge and the inflec- 
tion frequency; i.e., the source spectrum is confined to one half of a passband. 

The key to the approach is the nature of the stationary phase fre- 
quency trajectory in a half-band. In Sec. 6.3 it was found that in any half band 
there is but one stationary phase frequency, and that it sweeps monotonically 
upward or downward in frequency through the half-band. If the half-band lies 
on the high frequency side of the inflection frequency, then the frequency sweep 

4The problems are isomorphic under the assumption that we are interested only in the 
propagation of the pulse over a distance that is much smaller than all but the KS > charac- 
teristic envelope distortion distance. 



148 

is upward, and is otherwise downward. In the constant curvature case the fre- 
quency sweep was found to be linear in time (Eq. 6.12). When the expression 
for this linearly sweeping stationary phase frequency was substituted into the 
stationary phase solution, the argument of the source spectrum function A was 
found to become a linear function of time. The signal envelope simply became 
the source envelope spectrum. In the half-band case, the stationary phase fre- 
quency sweep is not linear, but is still monotonic. The argument of the source 
spectrum function is therefore a nonlinear, but monotonic function of time. 
The signal envelope is therefore simply a distorted version of the source envelope 
spectrum. The early parts of the pulse envelope are a compressed version of the 
source envelope spectrum and the later parts are dilated. A second distortion 
mechanism is due to the frequency dependence of the |/c(2)(wsp)|

_1/2 term. As 
the stationary phase frequency migrates from the inflection frequency towards 
the band edge, the curvature of K(U) increases monotonically. The magnitude 
of the pulse envelope, therefore, is attenuated by an amount that increases with 

time. 

As an example, consider a sequence of pulses that begins with a very 
narrow band pulse and ends with a wide band pulse. All intervening pulses are 
of gradually increasing bandwidth, and all pulse spectra are confined to a half- 
band portion of the spectrum. The first pulse, being of very narrow bandwidth, 
distorts such that its envelope becomes its initial envelope spectrum. Later 
pulses, owing to their larger bandwidths, show distortion due to the nonlinear 
dependence of the stationary phase frequency on time. The pulse envelopes still 
resemble their initial envelope spectrum, but the early portions of the envelope 
are compressed and the later portions are dilated and attenuated. Each pulse in 
the sequence resembles a more severely distorted version of its initial envelope 
spectrum than that preceding it. An example of such a sequence of pulses is 
shown in Fig. 6.5, where the half-band is that above the first scatterer resonance 
stopband for the isotropic periodic side branch waveguide. 

The significance of the group velocity in long range pulse propagation 
is made clear in this example. The information contained in a feature of the 
source spectrum (such as the spectral peak) is reflected in the received signal at 
the time t = <z/cgr, where cgr is the group velocity evaluated at the frequency of 
the feature. The peak of the triangular spectrum shown in Fig. 6.5, for example, 
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Figure 6.5: The spectra of four pulses and the associated asymptotic pulse envelopes. The 

pulse with the narrowest bandwidth distorts such that its envelope is the pulse spectrum. As 

the pulse bandwidth increases, the pulse envelope becomes an increasingly distorted version 

of the pulse spectrum. 

AS-94-761 
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which occurs at the frequency uo, results in a peak in the pulse envelope at the 
time t = z/cgT(uo). 

There may be, if the source spectrum has a particularly flat, broad 
peak, a slight modification to the peak arrival time that is due to this distortion 
effect. The received pulse envelope is ac(t) = A(u;8p(£))|27rzK;(2)(t<;8p(£))|~1/2. 
The time of arrival of the envelope peak is given by d\ac(t)\/dt\t=t    = 0. The 

pk 

equivalent expression in terms of the stationary phase frequency associated 
with the arrival time, o>pk = usp(tp^), is 

AM 
du[2TrZK^{u)}1/2 = o, 

U)=Wpk 

-^-lnA((j) 
du 

= -£-ln|«<2>(w)|1/a 
du w=wpk 

or 
A(fafrk)        1/^Vpk) 

A^Kk)      2«(2)(c;pk)
- 

The ratios may be expressed as logarithmic derivatives, and the peak frequency 
is given by 

A A . . . 
(6.15) 

w=u>pk 

As the right hand side of Eq. 6.15 is positive for u > u\ and is negative for 
u < Ui, we have up^ < u0 for UQ > u± and o;pk > u0 for u0 < U[. Owing to 
the fact that the frequencies nearest u\ are associated with the earliest arrivals, 
the received envelope peak is found to arrive slightly earlier than the time 
associated with the spectral peak. Except when the peak of the pulse spectrum 
has very small curvature, however, this effect is negligible. 

6.4.3    The Airy Leading Edge Solution 

We now consider the form of the leading edge of a pulse that arises 
from a source spectrum that includes an inflection frequency. As it was found in 
the last two sections that the earliest arrivals are associated with the frequen- 
cies nearest the inflection frequency, we concentrate on that spectral region. 
If the source spectrum does not include the inflection frequency, then, by the 
analysis of Sec. 6.4.2, the leading edge of the pulse envelope resembles the edge 
of the source envelope spectrum nearest the inflection frequency.   When the 
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source spectrum does include the inflection frequency, then the analysis differs 
significantly from that of the previous two sections. We must take two sta- 
tionary phase frequencies into account and must also consider the contribution 
to the solution by the gradual phase frequency. We must therefore consider 
the leading edge solution in two parts: the pre-critical part that arises from 
the gradual phase frequency and the post-critical part that arises from the two 
stationary phase frequencies. 

The solution for times up to the critical time is given by Eq. 6.9, where 
the gradual phase frequency is given by Eq. 6.3. The gradual phase frequency 
is simply ugp = u)U from which we find K

{1)
{U&) = l/cgi, in which case we may 

write t - Kw(ui)z = t- z/cgi = t - tc(z). Equation 6.9 therefore becomes 

(U!3)*)1/3' 
p(^0 = 7^r^^-w,t,Ai 

t-tc 
(6.16) 

(£«[3)*)1/3. 
which is the explicit solution for the pre-critical time interval. 

While the phase function does, at the critical time, develop a pair of 
stationary phase frequencies, the stationary phase regions associated with these 
frequencies overlap until some time after the critical time. The stationary phase 
solution may not be used for the two stationary phase frequencies independently 
until their stationary phase regions become disjoint. It appears, then, that we 
have no valid solutions for the early part of the post-critical time interval. The 
pre-critical solution (Eq. 6.16), however, remains valid for some time after the 
critical time. The expansion of the phase function used in the gradual phase 
solution (Eq. 6.6), and therefore the gradual phase solution itself (Eq. 6.9), 
remain valid in the early portion of the post-critical interval. It may be seen 
quite clearly in Fig. 6.1 that Eq. 6.6 remains a valid representation of 9(u, z, t) 
for some time after the critical time. Equation 6.16 is therefore the solution up 
through the critical time and the ensuing pair of stationary phase solutions do 
not gain validity until some time after the critical time. 

Once the stationary phase regions become disjoint, the solution is 
given by Eq. 6.4 with the stationary phase frequencies given by Eq. 6.2. In order 
to find an explicit expression for the stationary phase frequencies, we begin with 
the expansion of the dispersion relation about the inflection frequency 

«ML^ = «fa) + *(1)fa)(w - wO + i«(3)(wO(" - ^i)3, (6.17) 
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where we have made use of the definition of the inflection frequency (K^(U{) = 
0). The derivative of the above expansion, evaluated at the stationary phase 
frequency, may be substituted into the stationary phase frequency condition to 
result in 

K +^«r;(wsP -^i)2 

where the notation K^n\ui) = «•    has been introduced.  The two stationary 
phase frequencies are therefore given by 

uap(t) = W±(t) =Vi± 
t-U 
1    (3) 

1/2 

(6.18) 

where the + case represents one stationary phase frequency and the — case 
represents the other. Note that Eq. 6.18 is the classic expression for the stable 
part of a pitchfork-type supercritical bifurcation (Drazin, 1992). 

In order to evaluate the stationary phase solution (Eq. 6.4) at the sta- 
tionary phase frequencies, we must obtain expressions for K(U±) and /^2)(w±). 
Derivatives of the expansion of K(U) about u-x (Eq. 6.17) may be evaluated at 
the stationary phase frequency (Eq. 6.18) to result in 

K(U±) = «i ± 

K (2) (Wt)   =  ± 

t-U 
1    (3) 

L2«i    Z. 

(3) 

-.1/2 

2K\ 

— (t + 2z/cgi) 

I 1/2 

■{t-tc) 

We may now evaulate the stationary phase solution at the two stationary phase 
frequencies and add the results to obtain 

p(z,t)   = 

+ 

A(W+) 
.(3) 

Jhz-Wit]_-j3(t-tc)3/2(IK[3)z)-1/a     •   /4 

[2ir\2K^}z(t-U)\l/2]1/2 

[27r|2/cf3)Ä(t-*c)|1/2]1/2< 

;jK^-^t]eJ|(t-tc)3/2(l/c(3)z)-l/2e_J7r/4^ 

It was shown earlier (Eq. 6.5) that the local frequency of a solution that arises 
from a particular stationary phase frequency is simply the stationary phase fre- 
quency. The signal that arises from the u+ stationary phase frequency therefore 
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ramps up in frequency with time and that from u- ramps down in frequency 
with time. The sum of the two signals that arise from these stationary phase 
frequencies is therefore expected to undergo envelope oscillations that increase 

in frequency with time. 

We may now proceed to find explicit expressions for the post-critical 
part of the leading edge of the pulse. As we are interested in only the leading 
edge, the structure of which involves only frequencies in the neighborhood of 
the inflection frequency, we expand the pulse spectrum about the inflection 

frequency: 

A(w±)   =   A(u>i) + Aw(ui)(u±-LJi) 

=   A(Wi)±A(1)(^i) ■& 
t - z/ct 

1    (3) 

1/2 

If the spectrum has zero slope at the inflection frequency, then the post-critical 
part of the solution is 

p(M) = (2Ar)1/2- 
A(cJi) 

2«r'z(i-*c)|1/< 
_ej[*i*-«ii] cos 

2 (t - tcf'
2 

3(i«[8)z)^ 
7T/4 (6.19) 

If the spectrum has nonzero slope at the inflection frequency, then the leading 

edge is given by 

p(z,t) = ^ reifo*-«*l 
(27T)1/2|2«p)2(t-tc)|l/4 

1 + 
A. (i) 

+ 

Ai 

Ai 

t-tc 
1    (3) 

1/2' 
-j[(2/3)(t-Z/Cgi)

3/2(|«[3)
Z)-1/2-pi/4] 

t-tc 

1    (3) 

t/2' 
J[(2/3)(t-tc)3/2(^[3)

2)-
1/2-pi/4] > . (6.20) 

In Fig. 6.6 is shown the envelopes of the pre-critical part of the solu- 
tion (Eq. 6.16) and the A|

1}
 = 0 post-critical solution (Eq. 6.19). Except for 

the singularity in the post-critical part of the solution at the critical time, the 
pre and post-critical parts of the solution are very nearly identical. As we have 
argued, in the early part of the post-critical interval, it is the gradual phase 
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-3 

urn* 
Figure 6.6: The leading edge of the pulse envelope when the pulse spectrum has a slope 

of zero at the inflection frequency. The solid line is the pre-critical solution, which is valid 

up through the critical time and the dashed line is the post-critical solution, which becomes 

valid after the critical time. 
Ao-94- foe. 

solution and not the stationary phase solution that is valid. We may there- 
fore take the pre-critical solution (Eq. 6.16) alone as a good representation of 
both pre and post-critical parts of the leading edge of the pulse. Note that 
the solution is consistent with what we expect to result from a bifurcation in 
the stationary phase frequency trajectory. During the pre-critical time inteval, 
there is only the single gradual phase frequency, and the solution is composed of 
a signal with a well-defined frequency and very small amplitude. As the phase 
rate becomes increasingly gradual (as t —> tc), the signal grows in strength. At 
t = tc, the bifurcation occurs, and the solution is thereafter composed of two 
signals of differing frequency that beat with one another. As the frequencies of 
these signals diverge, the beat rate increases (as is clearly evident as envelope 
oscillations in Fig. 6.6) as t3^2. 

In Fig. 6.7 is shown the envelopes of the pre-critical part of the solu- 
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post-critical 
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pre-critical 
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•10 
t-to 

Figure 6.7: The leading edge of the pulse envelope when the pulse spectrum has a nonzero 

slope at the inflection frequency. The solid line is the pre-critical solution, which is valid up 

through the critical time, and the dashed line is the post-critical solution, which becomes 

valid after the critical time. Also indicated with a dotted line are the envelope minima. 
AS-94-763 

tion (Eq. 6.16) and the Af^ ^ 0 post-critical solution (Eq. 6.20). The result is 
very similar to that of the A-x) = 0 case, but the signal nulls are now signal min- 
ima. This is because in the A|

X)
 ^ 0 case the pulse spectrum is non-constant in 

the vicinity of the inflection frequency, and therefore the strengths of the signals 
associated with the two stationary phase frequencies are not equal. In order 
to obtain perfect destructive interference (i.e., perfect nulls in the total signal), 
the interfering signals must be of equal amplitude. As the signal strengths are 
not equal, the nulls are not complete. The resultant signal minima occur at 
the same times that the nulls occur in the A-J) = 0 case, but the signal level at 
the minima are proportional to 

Ai  (±KJ
3)

*)
5
/

12
' 
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6.4.4    The -3/2 Law Tail Solution 

We now consider the form of the trailing edge of the pulse. As it 
was found in the Fourier transform and half-band pulse sections that the last 
arrivals are associated with the frequencies nearest the band edges, we con- 
centrate on that spectral region. Recall that the stationary phase frequencies 
all asymptotically approach the band edges. If the pulse spectrum does not 
include a band edge frequency, the stationary phase frequencies eventually mi- 
grate out of the spectral region occupied by the source spectrum. The signal 
amplitude therefore becomes zero a finite time after the arrival of the leading 
edge. In other words, the pulse remains localized. By the results of the Fourier 
transform pulse and half-band solution sections, the tail end of the pulse en- 
velope resembles the edge of the source envelope spectrum nearest the band 
edge. If, on the other hand, the pulse spectrum does include the band edge 
frequency, then the stationary phase frequency does not, in finite time, leave 
the spectral region occupied by the source spectrum. The signal amplitude 
never reaches zero, and the pulse is no longer localized. It is instead trailed by 
a long, asymptotically decaying tail. This is the case considered here. 

Again, an explicit expression for the stationary phase frequency is 
found by expansion of the dispersion relation in the vicinity of the frequency 
of interest: the band edge frequency. We first introduce some notation. The 
band edge frequency is u^e. Each band edge is associated with a Bragg index 
n, which is the integer such that 

lim Re{q(u)h} = nir. 

While the band edges on either side of a Bragg stopband have the same in- 
dex, those on either side of a scatterer resonance stopband have indices that 
differ (one must be even and the other odd). Recall (see Eq. 3.6) that the 
nondissipative dispersion relation is given by 

cos(qh) = Re{T^(u)} = j(u), (6.21) 

and that the band edges occur where q(u)h = mr and \i{to)\ = 1. The expan- 
sion of cos(qh) about qh — mr is 

(qh — 7i7r)2 

cos(<7/i)|g_ = (-ir 1 
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We solve for qh to find 

qh = nix ± 21'2 [1 - (-1)" cos(qh)}1/2 , (6.22) 

where the upper of the stacked signs (here a +) refers to the high frequency 
edge of the stopband and the lower (here a -) refers to the low frequency edge. 

The expansion of ^(u) about o^e is 

7MU„be = (-1)" + T£V - <*.), (6-23) 

where the identity 7(o>be) = (-1)" has been used (see discussion following 
Eq. 3.7) and 7^ stands for d^/du\M^he. Equations 6.21, 6.22 and 6.23 may 
be combined to yield the expansion of the dispersion relation about the band 
edge frequency: 

<?Ml_ = Z ± ^T^- [(-l)n+1(^ - <*»)]     • (6-24) lo;~Wbe h h 

As we are concerned only with passband frequencies, for which q(u) = K(U), 

Eq. 6.24 may be taken to be an expansion of K(UJ) as well. 

It is worth noting that this expansion does a surprisingly good job at 
modeling the behavior of the dispersion curve in the vicinity of the band edge. 
As the band edge is approached from the passband side, the imaginary part of 
q is zero and the slope of the real part becomes infinite, as it should. At the 
band edge frequency both the real and imaginary part of q are cusped, and as 
the band edge frequency is approached from the stopband side the real part of 
q is constant and the slope of the imaginary part of q becomes infinite. The 
highly unusual behavior of the dispersion curve at the band edge is beautifully 
modeled with a simple square root function! 

We may now find an explicit expression for the stationary phase fre- 
quency. The derivative of Eq. 6.24 is 

"+1(o;-a;be)]"
1/2, (6.25) 

which may be substituted into the stationary phase condition and the resultant 
expression solved for the stationary phase frequency.    With the use of the 
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relation 7^ = ±(-l)n+1|7b*)|, the stationary phase frequency is 

h(1)l 
Usp=u,he±^(z/t)2, (6.26) 

which approaches the band edge frequency as ~ I ft2. 

Again, in order to evaluate the quadratic dispersion solution, we must 
find expressions for K(uap) and K(2)(o;Sp). The substitution of Eq. 6.26 into 
Eq. 6.24 results in 

K(U,SP) = ^±^(ZA). (6.27) 

The derivative of Eq. 6.25, when evaluated at the stationary phase frequency, 

becomes 

*(aW = T-^(t/*)s. (6-28) 
I7be I 

The substitution of Eqs. 6.26, 6.27, and 6.28 into the stationary phase solution 
(Eq. 6.4) results in 

(\  (D|\1/2 

p(z, t) = A(usp)    gal        rf-s/VK»*/*)*^« V^'4. 

We see that indeed the pulse is trailed by a long oscillatory tail that only 
approaches zero amplitude as t —► 00. In such a limit, the solution becomes 

P(Z, t) = A(ü,be)  ( ^ )        zrB/VK™/*>*-^ V**'4. 

The frequency of the tail portion of the signal approaches the band edge fre- 
quency and the signal envelope decays as t~3/2. 

6.5    The Effect of Dissipation 
The approach used to evaluate the dispersion integral in the nondis- 

sipative case may easily be extended to include the effects of dissipation. In 
the presence of dissipation the conventional wave dispersion integral becomes 

p(z>t) = ± [AMe-^']^'^. 
2n J-00 
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Again, we treat z as a parameter and the dispersion integral may be written 

p(t) = -!- [+0° K^e^'^dw, (6.29) 

where A(u) = A(u)e~a^z is the effective source spectrum at the distance z. 
Equation 6.29 is now identical to Eq. 6.1, the nondissipative dispersion integral 
that we have been working to solve. Equations 6.4 and 6.9, the stationary and 
gradual phase solutions of the nondissipative dispersion integral, are therefore 
valid solutions for the dissipative case as well. The stationary and gradual 
phase frequency trajectories, however, are in some frequency ranges substan- 
tially influenced by dissipation. The explicit solutions derived in Sec. 6.4 are 
therefore not necessarily solutions in the dissipative case. We must consider 
the dissipative gradual and stationary phase frequency trajectories, which ne- 
cessitates a consideration of the effect of dissipation on the real part of the 
Bloch wave number. 

It was found in Sec. 3.2 that, while the real part of the Bloch wave 
number is, for the most part, not greatly affected by dissipation, there are, par- 
ticularly in the vicinity of the band edges, some substantial dissipative effects. 
The primary effect was found to be that the sharply cusped transitions that 
occur at the band edges are smoothed out (see Fig. 3.1). Away from the band 
edges, however, the qualitative features of K(U) are unaffected by dissipation. 
As in the nondissipative case, K(UJ) has zero curvature (i.e., a point of inflec- 
tion) near the middle of the band, and increasing curvature as the band edges 
are approached. These are the qualitative features of K(U) that were found to 
give rise to (1) a constant gradual phase frequency, (2) an earliest stationary 
phase frequency and a stationary phase frequency bifurcation at the frequency 
of the inflection, and (3) a decelerating migration of the resultant stationary 
phase frequency pair towards opposite band edges. Dissipation does, to a small 
degree, change the fine details of the trajectories, but they remain, away from 
the band edges, qualitatively unchanged. For this reason, the Fourier transform, 
half-band, and Airy leading edge solutions all remain valid in the dissipative 
case as well as in the nondissipative case. The source spectrum A(u) must 
simply be replaced by the effective source spectrum A{u))e~a^z. 

The parts of the frequency trajectories that depend upon the structure 
of the dispersion relation near the band edges are, in contrast, substantially 
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affected by the presence of dissipation. In the nondissipative case, the slope of 
K(U) becomes infinite at the band edges, and the stationary phase frequencies 
consequently approach, but never in finite time reach, the band edges. In the 
dissipative case, however, the cusp that demarcates each band edge is replaced 
by a point of inflection. Another inflection point appears near the center of 
each stopband. As inflections in the dispersion function have been found to be 
very significant in the determination of the trajectories of the stationary and 
gradual phase frequencies, these trajectories must be reconsidered. 

The structure of the gradual and stationary phase frequency trajec- 
tories may again be found by the graphical approach. Prior to the critical time 
associated with any of the inflection frequencies, only gradual phase frequencies 
exist. There is one associated with the inflection frequency that lies near the 
center of each stopband and each passband. Note that this set of inflection 
frequencies is such that K[ ' > 0. At the critical time tc — z/cgi associated 
with each of these inflection frequencies, the gradual phase frequency becomes 
a stationary phase frequency and undergoes bifurcation. In each passband and 
each stopband, therefore, a pair of stationary phase frequencies is generated 
at the critical time and the pair migrate towards the band edges. At each 
band edge, then, there are two converging stationary phase frequencies. At 
the critical time associated with the inflection frequency that now defines the 
band edge, these two stationary phase frequencies merge and become a sin- 
gle gradual phase frequency. This second set of inflection frequencies, where 
the stationary phase frequencies undergo confluence instead of bifurcation, are 
such that K\ < 0. These modified stationary and gradual phase frequency 
trajectories are shown in Fig. 6.8. 

Just as the earliest possible signal arrival occurs at the critical time 
associated with the bifurcation inflections, the latest possible signal arrival 
occurs at the critical time associated with the confluence inflections. In fact, 
the analysis of Sec. 6.4.3 that led to the Airy function solution for the leading 
edge of the pulse may be applied here to arrive at an Airy function solution for 
the trailing edge of the pulse. The only difference is in the sign of the argument 
of the envelope function; i.e., the trailing edge of the envelope function is a 
reversed Airy function. The long ringing tail found in the nondissipative case 
does not exist in the dissipative case. The signal shuts off at a signal shut-off 



161 

3z/cb 

Figure 6.8: The gradual and stationary phase frequency trajectories in the dissipative case. 

Each pair of stationary phase frequencies (shown as solid lines) originates from a single 

gradual phase frequency (shown as dashed lines). Pairs of stationary phase frequencies then 

merge and again become a single gradual phase frequency. 

AS-94-764 

time 

where cg; is the group velocity at the band edge inflection frequency. Realis- 
tically, the form of the tail of the signal is more probably determined by the 
large attenuation encountered near the band edges. It was found in Sec. 3.2 
that thermoviscous losses are greatly enhanced near the band edges. The signal 
shut-off time is therefore, more practically, a conservative estimate of the latest 
time a signal may be received. 
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Chapter 7 

Bloch Wave Energy Transport 

Here we consider the transport of energy by Bloch waves. First, 
expressions for the intensity, power, and energy density of time-harmonic Bloch 
waves are derived. These expressions are then used to calculate the energy 
transport velocity for both time-harmonic Bloch waves and narrowband Bloch 
wave pulses. It is shown that there are two energy transport velocities that are 
of relevance, each of which has a well defined physical interpretation. One of 
the two is shown to be both the velocity of energy transport by a time-harmonic 
Bloch wave and the velocity of energy transport in the waveguide sections for 
a narrowband Bloch wave pulse. The other is shown to be the net velocity of 
energy transport by a narrowband Bloch wave pulse as a whole. 

It is assumed that the system is nondissipative. While dissipative 
effects may be included without a great amount of complication, the essential 
properties of energy transport by Bloch waves are more clearly shown in the 
context of nondissipative waves. 

7.1    The Bloch Wave Intensity, Power, and 
Energy Density 
Here we find the energy density, the intensity, and the power asso- 

ciated with the Bloch wave field.   The Bloch wave field for which we derive 
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these quantities is, in this section, not the full, three-dimensional Bloch wave 
field, but the one-dimensional global field alone. Recall (see Sec. 2.2) that 
the global field is composed of only the one-dimensional compound traveling 
wave field that occurs in the waveguide sections (i.e., the /-wave/g-wave field). 
As is true of the results of the preceding chapters, the results found for the 
global field alone leads, with some care, to results that are valid for the full 
three-dimensional Bloch wave field as well. As the global field is a good rep- 
resentation of the full three-dimensional field in the waveguide sections away 
from the scatterers, the findings apply with equal validity to the full three- 
dimensional Bloch wave field in that region. The energy density, intensity, 
and power derived from the global field are therefore those of the full three- 
dimensional field away from the scatterers. In the waveguide sections near the 
scatterers, the full field has evanescent higher order modal components that 
are not accounted for in the global field representation. There is, however, no 
intensity or power associated with an evanescent wave field. Both the intensity 
and power derived from the global field are therefore exactly those of the full 
field in the waveguide sections. There is, however, energy density associated 
with an evanescent wave field, and the energy density calculations shown here 
are consequently not exact near the scatterers. The issue of the contribution 
of evanescent modes to the energy field is addressed in Sec. 7.3.3. 

7.1.1    The Bloch Wave Intensity 

The definition of the acoustic intensity field is 

I(r,0 = Re{p(r,*)}Re{u(r,£)}, 

or, equivalently, 

I = - [pu + p*u* 4- pu* + p*u]. 

u      rto+2-!r/uJ 

(1) = — M, 

The time average intensity (I) is defined, for periodic signals, to be 

U     ftc 

2ir Jto 

where u> is the fundamental frequency. The time average intensity is therefore 

(I) = I [(pu) + (p*u*> + (pu*) + (p*u)]. (7.1) 
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Under the assumption that the field is time-harmonic, the complex acoustic 
pressure and particle velocity fields may be expressed 

p{r,t)=pu{r)e-iut 

u(rli) = uw(r)e-'w*l (7.2) 

where pw(r) and uw(r) are the complex, time-harmonic field variables seen in 
Chaps. 2 and 3. The subscript u denotes the parametric dependence of the 
time-harmonic field on the frequency. An expression for the time-averaged 
intensity of a time-harmonic field is found by substitution of Eqs. 7.2 into 
Eq. 7.1. The resultant terms (pwuwe~2j(Jt) and (p*u*e2iu") are both zero, and 
the time-averaged, time-harmonic intensity vector is 

(U = \ foX + PX] . (7.3) 

A property of the time-averaged intensity field that is made use of 
later is found by consideration of the divergence of Eq. 7.3: 

V • (U = i [pwV ■<, + <,• Vp„ + P:V • uw + uw • Vpl). (7.4) 

The substitution of Eqs. 7.20, 7.21, and their complex conjugates into the right- 
hand side of Eq. 7.4 results in 

V • <U = 0. (7.5) 

The time-averaged intensity field is solenoidal. 

The intensity associated with a forward traveling Bloch wave of ampli- 
tude A is found by substitution of the expressions for the pressure and velocity 
fields associated with a time-harmonic Bloch wave into Eq. 7.3. These fields 
are, in the nth cell, 

jk(z-nh)   ,       / f   -jk(z-nh) 

PM-A 1 + g/f 

Mz) = — -^77 eJq   *» (7-6) poco 1 + 9/f 
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and the resultant Bloch wave intensity is 

1 \A\*1 - \g/f\2    2anh 

where n is the cell number. As the Bloch wave is nondissipative, a is nonzero 
only in the stopbands. In the stopbands, however, \g/f\ = 1 (see Appendix 
B) and the Bloch wave intensity is therefore zero. The Bloch wave intensity is 

therefore given more simply by 

(U = 2^jT+^77Fs" (T'7) 

In the uniform waveguide limit (that in which the periodic waveguide becomes 
uniform), the compound conventional wave field in each cell becomes progres- 
sive and the Bloch wave as a whole becomes a progressive conventional wave. 
In such a limit g/f —► 0 and the Bloch intensity becomes 

ZpoCo 

the time averaged intensity of a time-harmonic conventional wave of ampli- 
tude A. The ratio of the Bloch wave and the conventional wave intensities is 

therefore s ,   ,„„ 
(U(Bloch)_l-lg//|2 (7g) 

(U(conv) |l + <?//l2' 

This intensity ratio is shown plotted in Fig. 7.1. Note that the intensity of a 
Bloch wave of amplitude A carries, over a sizeable fraction of the spectrum, 
more energy than a conventional wave of amplitude A. While such an occur- 
rence seems impossible, it is simply an artifact of the normalization of the Bloch 
wave functions. In alternating passbands, the g-w&ve adds destructively to the 
/-wave at the cell center. The normalization forces the cell center pressure to 
have unit amplitude, and as a result the / and p-wave amplitudes may become 
much larger than unity. 

7.1.2    The Bloch Wave Power Delivery 
The time-averaged power delivered by a time-harmonic Bloch wave of 

amplitude A may be found by integration of the intensity over a plane normal 
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Figure 7.1: The Bloch wave energy density and intensity. The values shown are normalized 

by the energy density and intensity of a conventional wave of the same amplitude as the 

Bloch wave. AS-94-765 

to the z axis. As the intensity is independent of z, the placement of the plane 
of integration along the z axis is arbitrary. The intensity is also independent 
of the transverse coordinates, and integration of the intensity is trivial: 

<Pw) = /(U-dS = /lwg(U> 

or 

(P») = 
1    \A\2    l-\g/ff (7.9) 
2p0CoA4wg|l+s//l2 

The ratio between Bloch and conventional wave power is the same as that of 
the Bloch and conventional wave intensities (see Eq. 7.8). 

It was argued at the beginning of this section that the results of the 
intensity and power analyses are valid for the full, three-dimensional Bloch 
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wave field in the waveguide sections only. In the case of the power we may 
extend that range of validity to include the scattering region. Consider the 
integral of the exact time-averaged intensity field over a closed surface S. The 
surface is composed of three sections. Two of the sections are planar end-caps, 
labeled Si and S2, that are normal to the z-axis, and the third, labeled Sww, 
connects Si and S2 along the waveguide wall. The end cap surfaces Si and 
S2 are located in a waveguide section and a scatterer, respectively. Using the 

divergence theorem and Eq. 7.5 we have 

J V-{L)dV   =   jf(L>-dS = 0 

=   J    {l„)-dS +js%)-ezdS-js^)-ezdS. 

Because the normal component of the particle velocity is zero at the waveguide 
wall, the time-averaged intensity is likewise zero (see Eq. 7.3) and the integral 
over the waveguide wall surface Sww is zero. The integrals over Si and S2, 
which are simply the power delivered to those surfaces, are therefore equal and 

we have 
(P.)|5l = (Pw)U2. 

As must be the case, the same power is delivered to any surface that completely 
blocks the cross section of the waveguide, regardless of the location of the 

surface in the waveguide. 

7.1.3    The Bloch Wave Energy Density 

We now consider the energy density associated with a Bloch wave 
field. The kinetic energy density of an acoustic field is given by 

eK(r, t) = ^p0Re{u(r, £)} • Re{u(r, t)} = \pQ [u • u + 2u ■ u* + u* • u*], 
2 8 (7-10) 

and the potential energy density is given by 

MM) = l-^Re{p(r,t)r = \-^ [p2 + 2pp* + p*2] . (7.11) 
2. PQCQ O POCQ 

L 
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When the time-harmonic field expressions (Eq. 7.2) are substituted into Eqs. 7.10 
and 7.11 and the resultant equations time-averaged, we find the kinetic and po- 
tential energy densities associated with a time-harmonic field: 

<eKw) = jPo^w • u* (7.12) 

<Cpw> = \^Pl (7-13) 

The total energy density associated with a time-harmonic field is therefore 

(O = (eKw) + (epw) = 7poUw • u* + -—^pl- 

The kinetic and potential energy densities associated with a time- 
harmonic Bloch wave field may be found by the substitution of the Bloch wave 
field expressions (Eqs. 7.6) into Eqs. 7.12 and 7.13: 

,        N _  1 \A\* 1 - g//*e2^-"*) - g//e-W«-n*) + \g/f\* 
{&K"}- 4po$ \l+9/f\2 

l\A\2l+ g/f*e*M*-nV + g/fe-2j«z-nh) + |^//j2 

4p0cg \i + g/f\2 

The total Bloch wave energy density is therefore 

i|^i|    i -ry/j   c -   • T^/jt- -r \y/ j \        2anh 
(eP"> = -A^T5 n   ,  „/m e 

At passband frequencies a = 0 and we have 

,      1 l^l2 1 + I*?//]2 

^      2p04\l+g/fr 

and at stopband frequencies \g/f\ = 1 and we have 

(P   \ -   l M 2 r-2an/1 

^     2pocg|l+y//|2e        • 

In the uniform waveguide limit (that in which the periodic waveguide degen- 
erates to a uniform waveguide), the Bloch wave field becomes a progressive 



170 

conventional wave field (g/f — 0 and a -» 0). In such a case the Bloch wave 

energy density in the zeroth cell reduces to 

{"}      2p0c%> 

the energy density associated with a progressive conventional wave of amplitude 
A. The ratio of the Bloch and conventional wave energy densities is 

(OCBtoch) = l + Wfl 
(ew)(conv)       I1+5//I2' 

This energy ratio is shown plotted in Fig. 7.1. As in the case of the Bloch wave 
intensity, the unusually large energy density near some of the band edges is 

due to the Bloch wave normalization. 

While the energy densities considered thus far are all volumetric en- 
ergy densities (i.e., they are measured in Joules per unit volume), we may 
alternatively consider linear energy densities. The volumetric energy density 
may be made linear by an integration with respect to the transverse coordi- 

nates: 
(Oi = I I (eu)dxdy. 

As the volumetric energy density in the waveguide sections depends only upon 
the axial coordinate z, it may be made linear simply by multiplication by the 

waveguide cross sectional area. 

7.2    The Microscopic Energy Transport 
Velocity 
We may now consider the velocity of energy transport by time-harmonic 

Bloch waves. We have thus far found expressions for the density of energy and 
the rate of delivery of energy. Implicit in the definitions of these quantities 
is the definition of a velocity, the energy transport velocity. Consider an in- 
finitesimal surface dS that has arbitrary orientation. By the definition of the 
intensity, the rate at which energy is delivered to this surface (i.e., the energy 
flux at the surface) is given by the differential power d(Pu>) = (Iw)-dS. Consider 
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now the energy field in the vicinity of the surface. In order to deliver energy 
to the surface, the energy field must be in motion. The power delivered to the 
surface by the energy field in motion at the velocity v# is d(Pj) — (ew)v£ • dS. 
In order for the two expressions for the power at the surface to be consistent, it 
must be the case that {eJ)\E — (Iw)i or, equivalently, that the energy transport 
velocity is given by 

vE = ^. (7.15) 

Equation 7.15 is the definition of the velocity of energy transport that is implicit 
in the definitions of energy density and intensity. The same argument, when 
cast in terms of the power and linear energy density, leads to the scalar energy 
transport velocity 

vE = ^f, (7.16) 

where the velocity is directed along the axis associated with the linear energy 
density. 

The flow of acoustic energy bears a strong resemblance to the flow of 
mass in a hydrodynamic system. The density and flux of energy in the acoustic 
system is analogous to the density and flux of mass in the hydrodynamic system. 
Consider the flow of liquid through a channel such as those which compose the 
waveguide sections of the periodic waveguide. If the mass density and flux rate 
at a plane that is normal to the channel axis are given by p-p and M, respectively, 
then the flow velocity is given by vp = M/p-p. Note the similarity between this 
expression for fluid velocity and the expression for energy transport velocity 
(Eq. 7.16). Just as the flow of the liquid delivers mass, the flow of acoustic 
energy delivers power. This analogy is expanded upon in Sec. 7.4, where it 
proves to be quite useful. 

Upon substitution of the expessions for the Bloch wave energy density 
and power (Eqs. 7.14 and 7.9) into the definition of the energy transport velocity 
(Eq. 7.16), we find 

i - \g/f\2 ,71~ 
VE==C0TT^F- (7-17) 

This is the expression for the velocity of energy transport by time-harmonic 
Bloch waves.   The energy transport velocity is less than Co, the free-medium 
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sound speed, at all frequencies, and in the stopbands, where \g/f\ = 1, we have 
vE = 0. In Fig. 7.2 is shown a plot of the energy transport velocity. Included in 
the plot is the Bloch wave group velocity cgr, to show that the energy transport 
velocity and the group velocity differ, particularly in the stopbands, where the 
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uh/c0 

Figure 7.2: The microscopic energy transport velocity and group velocity for the isotropic 

periodic waveguide described in the introduction. 
y AS-94-766 

energy transport velocity is zero and the group velocity is infinite. 

As the Bloch wave field used in the derivation of the Bloch wave energy 
transport velocity is the global field, the validity of the result as it applies to 
the full three-dimensional field is worthy of some discussion. It is pointed out 
in the beginning of Sec. 7.1 that the calculation of energy density, power, and 
intensity based on the global field are valid for the full three-dimensional field 
in various regions of the waveguide. The Bloch wave intensity field (Eq. 7.7) is 
valid anywhere in the waveguide sections. The expression for the Bloch wave 
power (Eq. 7.9) is valid everywhere in the waveguide, and the expression for the 
Bloch wave energy density (Eq. 7.14) is valid in the waveguide sections away 
from the scatterers. The validity of the expression for the Bloch wave energy 
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transport velocity (Eq. 7.17) is therefore limited by that of the energy density. 
Equation 7.17, the energy transport velocity associated with the global field, 
is therefore that of the full three-dimensional field in the waveguide sections 
away from the scatterers. 

The energy transport velocity in the waveguide sections is a (indi- 
rectly) measureable quantity. Recall that the measurement of the field at two 
points in the waveguide section yields sufficient information to determine the 
structure of the /-wave/p-wave field (see Appendix E). Such a measurement 
is likewise, via Eqs. 7.7 and 7.14, sufficient to determine the time average en- 
ergy density and intensity in the waveguide section. As the energy transport 
velocity is simply the ratio of these two quantities, the two point measure- 
ment is therefore a determination of the energy transport velocity as well. We 
may therefore simply use the measured value of g/f (as described in Appendix 
E) in Eq. 7.17 to result in a measured value of the energy transport velocity. 
In Fig. 7.3 is shown a plot of the experimental values of VE along with plots 
of theoretical values derived from both the dissipative and the nondissipative 
theories.1 The agreement between theory and experiment serves to verify that 
energy is transported through the waveguide sections at the velocity VE- 

While several of the characteristics of the energy transport velocity 
(such as those pointed out in the discussion following Eq. 7.17) are certainly 
consistent with what we would expect, we must ask how the energy transport 
velocity can not be equal to the group velocity. For propagation distances that 
are small compared to the smallest characteristic distortion distance, a Bloch 
wave pulse propagates without distortion at the group velocity. Certainly in 
that case the energy must be transported at the group velocity, as in the case 
of dispersive conventional waves (see Eq. 5.36). On the other hand, the energy 
transport velocity shown in Eq. 7.17 is that which is measured by an energy 
transport probe placed in a waveguide section. We may recongnize the source of 

lrThe expressions for energy density and intensity derived here for the nondissipative case 
may easily be generalized to include the approximate effect of dissipation. As mainstream 
thermoviscous losses have been taken to be insignificant as compared to the thermoviscous 
acoustic boundary layer losses, the impedance of the plane wave mode is the same as that in 
the absence of dissipation (see, for example, the book by Pierce, 1981). Equation 7.17 may 
therefore be made dissipative simply by using the dissipative value of g/f. 
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Figure 7.3: Theoretical and experimental values of the microscopic energy transport veloc- 

ity AS-94-767 

this apparent contradiction by consideration of another definition of the linear 
energy density and hence another energy transport velocity. While this second 
definition of the linear energy density is rather contrived, it is one that both 
yields an interesting result and sheds light on the reason the energy transport 
velocity differs from the group velocity. As the energy transport velocity of 
Eq. 7.17 applies to the transport of energy within a cell, it is referred to as the 
microscopic energy transport velocity and is labeled vE

ml . 

7.3    The Macroscopic Energy Transport 
Velocity 
In this section we find a second expression for the energy transport ve- 

locity that is based on a different definition of linear energy density. While the 
microscopic energy transport velocity derived in Sec. 7.2 is based on the energy 
density in the waveguide sections, that derived here, called the macroscopic en- 
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ergy transport velocity, is based on the linear energy density averaged over a 
waveguide cycle. As this cycle-averaged or macroscopic value of the linear en- 
ergy density necessarily involves the field in the scattering sections, we must 
here use the full three-dimensional field in its calculation. We first derive an 
integral expression for the total time-averaged energy in a given volume. The 
time-averaged energy contained in a waveguide cycle is then calculated and di- 
vided by the length of the cycle to result in an expression for the cycle-averaged 
linear energy density. We are then able to find the associated expression for 
the macroscopic energy transport velocity and consider the findings. 

7.3.1    The Time-Averaged Energy Integral 

The total time-averaged acoustic energy contained within a closed 
surface may be calculated using an interesting surface integral approach that 
is similar to one used for electromagnetic fields (e.g., Collin, 1960). It is shown 
that the net time-averaged energy in a volume is given by an integral over the 
surface that encloses that volume. 

The linear, nondissipative governing equations may be written 

du 
Polk+Vp = 0 (7-18) 

^+po^V-u = 0, (7.19) 

where Eq. 7.18 is the momentum equation and Eq. 7.19 is the combined mass 
continuity and state equation. For time-harmonic fields, Eqs. 7.18 and 7.19 
may be written 

Vpw = jujpoUu (7.20) 

^""^üK (7-2i) 
The partial differentiation of Eqs. 7.20 and 7.21 with respect to frequency yields 

V^^pou^cpo-^ (7.22) 

and 

*-&-'&)»+*Gä)&      (7'23) 
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respectively. With the use of Eqs. 7.20-7.23 and their complex conjugates, the 

following identities are readily derived 

V.|^uu)=JW 

V-   ft 

1 

^POCQ, 
ft ' du 

= -3 PwPv - 3U 

(7.24) 

(7.25) 

When these two identities are added, several terms cancel and we are left with 

ri v- dK^dp: 
= -4j 

1 ,  ,  1 
71   -j   PuPu + 7Pouw • uw 
4 Vpoc5 / 4 

(7.26) 

We recongnize the two terms on the right hand side of Eq. 7.26 to be the 
potential and kinetic energy densities, respectively (see Eqs. 7.12 and 7.13). 

Equation 7.26 may therefore be written 

(O = ^v • 
'    du*     dpi (7.27) 

We next integrate Eq. 7.27 over a volume enclosed by the surface S. The 
resultant volume integral over the divergence may be converted, by way of the 
divergence theorem, into a surface integral, and we have 

<&> = />>««' = {/, Pa 
du 
-+^u. 

du       du 
■ dS, (7.28) 

where (Eu) is the total time-averaged energy enclosed by the surface S. 

7.3.2    The Macroscopic Energy Density 

We may now use Eq. 7.28 to calculate the total time-averaged energy 
in a single cycle of the periodic waveguide, and therefore the macroscopic energy 
density. The particular cycle over which we average is arbitrary, and is taken 
(completely generally) to be that between the planes defined by z = z0 and 
z = z0 + h. The surface of integration S therefore has planar end-caps normal 
to ez at z = z0 and z = Zo + h, and covers the inner surface of the waveguide in 
between (see Fig. 7.4). If the waveguide contains inclusions, then the surface 
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must also include detached sub-surfaces that enclose all inclusions at their 
surfaces. Because the waveguide wall and the inclusions, if present, are rigid, 
the normal component of the particle velocity at these surfaces is zero. The 
integrand of Eq. 7.28 is consequently also zero at these surfaces, and the only 
nonzero contributions to the surface integral arise from two end-cap surfaces 
at z = ZQ and z = ZQ + h. The integral expression for the energy enclosed in 
the waveguide cycle therefore reduces to 

<s">=-U Pu 
du* w   ,   Op* 
du      du 

e,dS+lf 
-I2=Z0 

PW 

d< , dp, + 
du      du 

u^ • ezdS. 
z=zo+h 

(7.29) 
It was shown in Sec. 3.5 that the acoustic pressure field, and consequently the 
particle velocity field, associated with a forward traveling Bloch wave are such 
that 

uw(r + hez) = uw(r)eJV\ 

These expressions may be used to relate the integral over the surface at z0 + h 

*^W*WHWWfWWtTWWITIWWWWWIWPHfW<Wl'IW' miHWHMVtiMeMV 

Figure 7.4:  An example of an integration surface that may be used in the calculation of 

the total time-averaged energy contained in a cycle of a periodic waveguide. 

to that at ZQ, and Eq. 7.29 may be written 

™ = iJs 
dpi 
du 

u„ dK 
' du 

AS-94-768 

+pu<fh-%- (^J' - uue""|- (p^hY ezdS.    (7.30) 
2 = 20 

The integral is now over the single end cap surface at z = zo, which is an 
arbitrary cross-section of the periodic waveguide. The integrand therefore need 
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not be evaluated at z = ZQ\ we simply perform the integral for an arbitrary value 
of z. Upon differentiation of the indicated complex conjugates with respect to 

u, Eq. 7.30 may be expressed 

(Eu) = ^fhe~2ah f \{p„<+P>») ■ ezdS 
du Js 4 

i du**    Vw du 
■ ezdS. (7.31) 

As the integrand of the first integral on the right-hand side is the time-averaged 
intensity (see Eq. 7.3), the integral itself is the time-averaged power, and 

Eq. 7.31 may be written 

{K) = %l>e-^{Pu) + {(l-e-^)ls OU OU 
• erdS. 

In the passbands, a = 0, q = K, and the total energy in a waveguide cycle is 

given by 

(Eu) = £h(Pu). (7-32) 

In the stopbands (Pu) = 0 (see Eq. 7.9), and the total energy in a waveguide 

cycle is given by 

(E„) = {(1 ~ e~2ah) I 
ÖU OU 

• ezdS. 

We may now calculate a linear energy density for a forward traveling 
Bloch wave in which the energy variations over a waveguide cycle are taken 
into account. As we have integrated the energy contained in a cycle of the 
waveguide, we may simply divide that value by h, the length of the cycle, to 
obtain the macroscopic linear energy density: 

(Oi 
(E„) 

h 
(7.33) 

From Eqs. 7.32 and 7.33, therefore, the macroscopic linear energy density for 

passband Bloch waves is given by 

-—IP) 
~ du{  w)- 

(7.34) 
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7.3.3    The Macroscopic Energy Transport Velocity 

We may now find the energy transport velocity associated with the 
macroscopic definition of the linear energy density. At stopband frequencies, 
the energy density in the cell is nonzero, the power delivered is zero (see Eq. 7.7) 
and, by Eq. 7.16, the energy transport velocity is zero. At passband frequen- 
cies the macroscopic energy transport velocity is found, by the substitution of 
Eq. 7.34 into Eq. 7.16, to result in 

vE=Ä^k)=C8' (passbM,d) 

VE = 0 (stopband). 

The energy transport velocity based on the macroscopic definition of the en- 
ergy density yields the "expected" result that the energy travels at the group 
velocity. This energy transport velocity, however, is not that which would be 
measured by an energy transport velocity probe.2 

7.4    The Stagnant and Mobile Energy 
In order to make sense of the difference between the two energy trans- 

port velocities, we must consider the differences between the macroscopic defi- 
nition of the linear energy density, which leads to an energy transport velocity 
that is equal to the group velocity, and the microscopic definition of the lin- 
ear energy density, which leads to a slightly larger energy transport velocity. 
While the microscopic definition only accounts for the energy field in the wave- 
guide sections, the macroscopic definition accounts for all energy present in 
a waveguide cycle. In the case of the isotropic periodic waveguide described 
in the introduction, it is found that the linear energy density associated with 
the field in the waveguide sections (i.e., the linear microscopic energy density) 
is less than the linear energy density associated with the entire cell (i.e., the 

2By probe we mean a point probe. An energy transport velocity probe that integrates 
over either exactly one cycle or a very large number of cycles would indeed measure the 
macroscopic energy transport velocity. 
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linear macroscopic energy density). This may be deduced from Eq. 7.16 and 
the finding that v^mi) > cgr (see Fig. 7.2). The field in the vicinity of the scat- 
terer must therefore have a "store" of energy that does not leave the scattering 
region. Indeed, this is the energy associated with a nondissipative scattering 
reactance. This stored energy is, for obvious reasons, termed stagnant energy 
and is the reason for the disparity between v^     and vE

ma = c^. 

A clear example of the stagnant energy stored by the scatterer is 
found in the case of the isotropic periodic waveguide described in the intro- 
duction. For this waveguide, the scattering is caused by a rigidly terminated 
side branch. The field in the side branch is a standing wave field composed 
of counter-propagating waves of equal amplitude. This field consequently has 
nonzero energy yet zero intensity, and consequently makes no contribution to 
the transport of energy. Indeed, as the intensity associated with the stag- 
nant energy field is zero, the energy transport velocity associated with the field 
is likewise zero (see Eq. 7.15). The energy field is truly stagnant. Another 
component of the field that is capable of energy storage is that made up of 
evanescent waveguide modes. Recall that in the waveguide sections on either 
side of the scatterer is a field that is composed of evanescent waveguide modes 
and is confined to the near-vicinity of the scatterer. The field composed of 
these evanescent modes has nonzero energy yet zero intensity, and is therefore 
also a stagnant energy field. 

flowing liquid 

V 

stagnant liquid 

Figure 7.5: The steady-state flow of liquid through the isotropic periodic waveguide de- 

scribed in the introduction. The fluid in the side branches is stagnant while that in the 

waveguide sections and the region above the side branches flows. AS-94-769 

The concepts of stagnant and mobile energy are nicely reflected in 
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the hydrodynamic flow analogy introduced in Sec. 7.2. Consider the steady- 
state flow of the liquid through the isotropic periodic waveguide described in 
the introduction, as shown schematically in Fig. 7.5. In the case of steady 
state flow, which is analogous to the case of time-harmonic Bloch waves, a 
fraction of the liquid is trapped in the side branches and doesn't ever flow 
through the waveguide sections. This is precisely the situation of the stagnant 
acoustic energy. The liquid was deposited in the side branches at t = — oo and 
is forever stagnant. Clearly, if we are to determine the fluid flow velocity on 
the basis of the linear mass density and flux, the linear mass density that must 
be used is that in the waveguide sections. If we decided to use a cell-averaged 
value of the linear mass density (i.e., if the stagnant liquid in the side branches 
were included in the calculation) then the value of the linear mass density 
would become larger than the waveguide value. Consequently, the resultant 
flow velocity would be smaller than that obtained from the waveguide density 
value. This smaller flow velocity, which is analogous to the macroscopic energy 
transport velocity, has no physical significance. It is simply a velocity that 
results from an arbitrary definition that does not correspond to any physical, 
measurable flow velocity. 

Just as the inclusion of the stagnant liquid in the calculation of fluid 
mass density results in a nonphysical fluid flow velocity, the inclusion of stag- 
nant energy in the calculation of the linear energy density results in a non- 
physical energy flow velocity. As the stagnant energy is indeed stagnant and 
makes no contribution to the transport of energy, it should not be included in 
the calculation of the energy density. Its inclusion is simply a contrivance that 
produces the "attractive" result that the energy is transported at the group ve- 
locity, as it is for dispersive conventional waves. The energy that makes up the 
stagnant energy field was deposited at t = -oo and has remained stationary 
since. The remaining energy, the mobile energy, travels down the waveguide 
at a fixed rate; that given by v^. For this reason, v^mi) is the true velocity at 
which energy is transported by time-harmonic Bloch waves. 
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7.5    Energy Transport by Bloch Wave Pulses 
While it is clear that the stagnant energy should not be included in 

the calculation of the energy transport velocity for time-harmonic Bloch waves, 
what of the case of Bloch waves that are not time-harmonic? Consider the case 
of a narrowband Bloch wave pulse. Over distances that are small compared 
to the smallest of the characteristic distortion distances, the pulse propagates 
without distortion at the group velocity. As the energy associated with the 
pulse is confined to the location of the pulse, the energy of the pulse as a 
whole must travel at the group velocity. On the other hand, it was found 
in Sec. 5.4 that a narrowband Bloch wave pulse has the functional form of a 
carrier frequency time-harmonic Bloch wave that is modulated by an envelope 
function (see Eq. 5.51). The energy transport velocity in the waveguide sections 
is therefore that of a carrier frequency time-harmonic Bloch wave: vE

mi (UQ). 

In other words, energy is transported through the waveguide sections at the 
velocity v^Vo) yet the energy associated with the pulse as a whole moves 
at the carrier frequency group velocity C&. This apparent inconsistency is the 

subject of this section. 

The key to the difference between the time-harmonic and the pulsed 
cases lies in the stagnant energy at the scatterers. In the time-harmonic case, 
the energy is not just stagnant, but is forever stagnant. It was deposited at 
t = -co, and is never transported. In the case of the Bloch wave pulse, on 
the other hand, there is no permanently stagnant energy. As the pulse must 
eventually pass, the stagnant energy must eventually become mobile. The 
stagnant energy must be deposited at the leading edge of the pulse and reclaimed 
at the trailing edge. While energy is transmitted through the waveguide sections 
at the velocity v^mi), this energy transport channel is charged with the additional 
task of the transportation of the stagnant energy as well as the mobile energy. 
This "bucket brigade" transport of energy is the reason the pulse travels at a 
velocity that is less than the energy transport velocity. 

Again, the hydrodynamic analogy is useful to illustrate the point. 
Consider a "packet" of liquid (like a highly compliant liquid filled balloon) that 
flows through the isotropic periodic waveguide described in the introduction. 
The liquid packet is driven by a force (perhaps by compressed gas or gravity) 
such that the fluid flow velocity in the waveguide sections is vF.   This flow 
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velocity is analogous to v^ (o^), the microscopic energy transport velocity 
associated with the carrier frequency of a narrowband pulse. Such a situation 
is illustrated in Fig. 7.6. In Fig. 7.6(a) the liquid packet is shown in a situation 
in which the fluid in the side branches is all stagnant, and the fluid transport 
channel (i.e., the waveguide section) transports only the fluid that occupies the 
waveguide section (i.e., the mobile fluid). During such a flow condition, which 
is very similar to the steady-state flow condition, the fluid flows as though the 
side branches were not present and the packet as a whole moves at a velocity 
of VF- AS the packet moves farther along, the tail of the packet eventually 
reaches a side branch, and the liquid in the side branch, which was stagnant, 
begins to flow, as shown in Fig. 7.6(b). The fluid transport channel (i.e., the 
waveguide section), which has a specified flow velocity of VF, is temporarily 
dedicated to the transport of the stagnant liquid from the side branch. At 
the same time, liquid is deposited into a side branch at the leading edge of 
the packet. During this time interval, the packet as a whole has come to a 
halt. Once the side branch at the tail is empty and that at the head full, the 
fluid transport channel is again dedicated to the transport of mobile fluid, and 
the cycle repeats. In such a "bucket brigade" cycle of fluid transport, the net 
velocity of the packet is less than vp. 

The transport of the acoustic energy in a narrowband Bloch wave 
pulse is less than the microscopic energy transport velocity for precisely the 
same reason the velocity of transport of liquid mass in the liquid packet is 
less than the flow rate in the waveguide sections. In the time-harmonic case 
there is truly stagnant acoustic energy associated with the scatterer; i.e., en- 
ergy that never moves. In the case of the narrowband pulse, however, there is 
no truly stagnant acoustic energy. The energy transport channels (the wave- 
guide sections) must eventually transport the stagnant energy, and the pulse 
consequently propagates at a velocity that is less than v^ (wo)- If we are 
concerned with the gross velocity of energy transport by the pulse as a whole, 
then we must consider that all energy is mobile at one time or another and all 
energy must therefore be included in the calculation of the energy density. The 
cycle-averaged or macroscopic linear energy density is therefore the appropriate 
density for use in the calculation of the gross energy transport velocity. 

It should be noted that the issue of the difference between the mi- 
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(a) Hi Ü -*^ 

(b) 
t£ 

vH V ■I -►0 

(c) H- Hi! II! -►vF 

Figure 7.6: The flow of a "packet" of liquid through the isotropic periodic waveguide 

described in the introduction. In (a) the liquid in the side branches is stagnant and the 

packet moves at the velocity vF, that of the liquid in the waveguide sections. In (b), the 

liquid in the side branches at the head and tail of the packet becomes mobile and the packet 

as a whole stops. The flow through the waveguide sections is dedicated to the transport of 

the side branch fluid. In (c), the side branch fluid has been transported and the packet again 

moves at the velocity vp, as in (a). 

AS-94-770 
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croscopic and the macroscopic energy transport velocities for Bloch waves is 
remarkably similar to that for electromagnetic wave propagation in dispersive 
dielectrics (Hines, 1952). In that case, the stagnant energy is stored in the 
oscillations of electrons relative to their parent ions. The microscopic energy 
transport velocity, found by excluding the energy of oscillation of the electrons 
from the calculation of the energy density, is the velocity of the time-harmonic 
electromagnetic field energy between the scattering molecules. The macro- 
scopic energy transport velocity, on the other hand, is found by inclusion of 
the electronic energy in the energy density calculation and is equal to the group 
velocity. A substantial difference between the Bloch wave and the dispersive 
dielectric wave cases is the difference in scale. In the case of the dispersive di- 
electric, the microscopic energy transport velocity cannot, owing to the scale, 
be measured. Any measurement of energy density would include the stagnant 
electronic energy, and the resultant velocity would be the macroscopic energy 
transport velocity. 

To conclude, there are two energy transport velocities that are relevant 
in the description of energy transport by Bloch waves. The first of the two is the 
microscopic energy transport velocity VEmi), as defined in Eq. 7.17. This velocity 
is (1) the velocity of energy transport by time-harmonic Bloch waves, and (2) 
the velocity of energy transport in the waveguide sections for narrowband Bloch 
wave pulses. The second of the two is the macroscopic energy transport velocity 
vE

ma = cgr, which is the net velocity of energy transport by a narrowband Bloch 
wave pulse as a whole. 
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Chapter 8 

Nonlinear Bloch Wave Propagation 

In this chapter we consider the effects of nonlinearity in the prop- 
agation of Bloch waves. More specifically, the nonlinearly generated second 
harmonic distortion component is considered. It was found in Chapter 2 that 
for a linear, progressive, time-harmonic Bloch wave, the field within a cell is, 
up to a constant factor, identical to that in any other cell of the waveguide. 
This peculiarity in the structure of the Bloch wave is exploited in the derivation 
of a discrete Green's function solution for the second harmonic field. In this 
framework it is straightforward to show that a forward traveling fundamen- 
tal Bloch wave excites both forward and backward traveling second harmonic 
Bloch waves. The amplitudes of these second harmonic waves oscillate peri- 
odically as the waves propagate, much like the spatial beating of the second 
harmonic wave that comes about in the case of conventional nonlinear wave 
propagation in dispersive media. The effective nonlinearity, however, is differ- 
ent from that of conventional waves. Nonetheless, the spatial beats indicate 
that the Bloch wave dispersion, like conventional wave dispersion, disrupts the 
synchronous propagation of the fundamental and second harmonic that is re- 
sponsible for the cumulative growth of the harmonic distortion components. 
The imposition of some sort of periodic structure in a uniform waveguide is 
therefore a possible means of disrupting the distorting effect of nonlinearity in 
guided wave propagation. 

The particular system under study consists of a 48 cycle length of 
periodic waveguide (the isotropic periodic waveguide described in Sec. 1.3.2 ) 
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that lies between a source at z = 0 and a semi-infinite uniform waveguide at 
z=(N-l)h. The source boundary condition is given generally by 

where po(t) is periodic. The uniform waveguide, which serves as a termination, 
is simply an extension of the periodic waveguide that contains no scatterers. 
It is assumed that the fundamental and second harmonic Bloch waves that are 
incident upon the termination waveguide obey the linear Bloch wave reflection 
laws. From Sec. 4.2, the ratio of the reflected to the incident fundamental Bloch 
wave amplitude at z = (N - l)h is given by RB(u\) = -{g/f)u and that for 
the second harmonic is given by RBM = -(9/1)2- These conditions serve as 
the termination boundary conditions. While the system under study is a finite 
periodic waveguide system, much of the solution approach is developed in the 
context of a semi-infinite periodic waveguide system. It is then argued that the 
results are applicable to the finite system. This approach simply allows for a 
more straightforward presentation of the solution method. 

We begin with a presentation of the system of nonlinear equations to 
be solved. The approximate approach to the solution of the system is outlined 
and the resultant nonlinear wave equation presented. The discrete Green's 
function is then derived and the particular solution for the second harmonic 
field is found. The characteristics of the particular solution are investigated and 
the similarities and differences between this solution and that of a nonlinear 
dispersive conventional wave problem are discussed. Finally, the full second 
harmonic solution is found and compared with measurements. 

8.1     The Nonlinear System of Equations and 
the Solution Approach 
In this section, the nonlinear, dissipative system of equations is pre- 

sented and the approach to the determination of the second harmonic field is 
outlined. We begin with a discussion of the approximate solution approach 
in which the effects of nonlinearity and dissipation are accounted for to lead- 
ing order. A straightforward perturbation technique is used to derive a lin- 
ear, inhomogeneous wave equation that governs the second harmonic field. A 
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Green's function approach to the solution of this equation is used and, with 
the introduction of complex field variables, a discrete Green's function solution 
technique is developed. As is pointed out in the introduction to this chapter, 
while the system of interest is a finite periodic waveguide system, the discrete 
Green's function solution technique is developed for the case of a semi-infinite 
periodic waveguide system. In this way the presentation is greatly simplified 
and the resultant discrete Green's function may be used in the anaylysis of the 
finite periodic waveguide system. 

The system of equations that governs the dynamics of a viscous, heat 
conducting fluid is composed of three conservation laws and two state relations. 
The equations of conservation of mass, momentum, and entropy are 

ft + V • (/hi) = 0, (8.2) 

p I-^- + u • Vu) = -VP + AtV2u + (/i/3 + /iB)VV • u, (8.3) 

and 

~fds _\      ^,   . „-.      u /dui      duk     2 n  dui\ 

^U+u'Vsrv'(KVT)+iUr+^-3^ 
respectively (e.g., Landau and Lifshitz, 1987). The equilibrium thermodynamic 
relations 

ß = ß(P,s) 

and 
f = f(P,s) (8.4) 

serve as state relations. The field variables and fluid parameters are defined in 
Sec. 2.1. 

The boundary conditions that the system of nonlinear equations must 
meet are (1) the waveguide wall or 'transverse' boundary conditions, and (2) 
the source and termination boundary conditions or 'z' boundary conditions. 
As the waveguide boundary is rigid and isothermal, the transverse boundary 
conditions are 
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the same as those shown for the linear system. The source boundary condition 
is given by 

Pl2=o = ^i cos(wi* - <f>i), (8.5) 

where u\ is the fundamental frequency and Ai is real.   As the waveguide is 
semi-infinite, the termination boundary condition is the radiation condition. 

8.1.1    The Approximate Combination of Nonlinear and 
Dissipative Effects 

Clearly, the system of nonlinear dissipative equations with periodic 
waveguide boundary conditions may not be solved exactly. The combined 
effect of nonlinearity and dissipation is simply too complicated. Even the lin- 
earized system with uniform waveguide boundary conditions proves to be too 
complicated to solve exactly; only approximate expressions for the thermovis- 
cous acoustic boundary layer exist. The standard approach to the solution of 
nonlinear, dissipative guided wave problems is to account for nonlinearity and 
dissipation separately and later combine their effects in an ad hoc manner. We 
first solve the linear dissipative system to determine the effect of dissipation 
on the linear field. We then solve, by a perturbation method, the nonlinear, 
nondissipative system. The linear dissipative effects are then imposed upon 
the field that is obtained from the nonlinear, nondissipative system. The result 
is an approximate solution of the full nonlinear, dissipative system. This ap- 
proach has been formally justified for the case of weakly nonlinear, dissipative 
propagation in a uniform waveguide (Anderson and Vaidya, 1991), and has 
produced theoretical results that show excellent agreement with measurements 
(Hamilton and TenCate, 1987). 

A qualitative justification for the method follows. It is found in the so- 
lution of the linear system of equations that, over a broad range of frequencies, 
the free-field, or so-called u2 losses are dominated by those associated with the 
thermoviscous acoustic boundary layer, the a;1/2 losses. The free-field dissipa- 
tion may therefore be neglected. Over a broad range of frequency in which this 
approximation is justified, most of the waveguide cross-section is occupied by 
the effectively nondissipative, so-called acoustic mode alone. Only a very small 
fraction of the waveguide cross-section is occupied by the entropy and vorticity 
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modes that make up the very thin thermoviscous acoustic boundary layer. As 
the nonlinear generation of distortion components occurs throughout the en- 
tire volume of the waveguide, and most of the field is effectively nondissipative, 
the nonlinear generation of distortion components is very nearly identical to 
that which occurs in a nondissipative system. It is therefore reasonable to as- 
sume that nonlinear effects may be effectively accounted for in a nondissipative 

setting. 

As we have already considered the solution of the linear dissipative 
system, we turn now to the nonlinear nondissipative system. That is, we con- 
sider the nonlinear system of equations (Eqs. 8.2-8.4) when n = ßB = « = 0. 
Even this system proves to be too difficult to solve exactly. To proceed, we 
limit the analysis to consider only cases in which the magnitude of the acoustic 
disturbance is very small; i.e., we consider the propagation of weakly nonlinear 
Bloch waves. As the magnitude of the acoustic disturbance is characterized 
by the acoustic Mach number e = UQ/CQ, where u0 is a characteristic acoustic 
particle velocity, we consider the case in which e«l. Such a restriction is not 
particularly limiting as it has been found that profoundly nonlinear acoustic 
phenomena such as shock formation, harmonic and intermodulation distortion, 
and acoustic streaming may occur even when the Mach number is less than 1% 
(Beyer, 1974). As all acoustic field variables are of 0(e), we neglect cubic and 
higher order terms in the system of equations. That is, we consider the effect 
of nonlinearity to leading (i.e., quadratic) order only. In such a case, the non- 
linear system of equations may be expressed in the form of a single equation, 
the modified Westervelt equation 

Vp-gs? = ^^-iv Uw)£- (8'6) 

where 

£=2"°U'U-2^f2 

is the Lagrangian density and ß is the coefficient of nonlinearity (Naze Tjotta 
and Tjotta, 1987). This is a nonlinear, nondissipative wave equation valid to 
quadratic order in the acoustic Mach number. 

A further simplification may be made by the identification of terms 
associated with local and cumulative nonlinear distortion effects. The second 
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harmonic distortion components that arise from the Lagrangian density term 
have been found to be non-propagating or so-called local distortion components 
that are generally not significant when compared to the propagating, so-called 
cumulative components (Naze Tjotta and Tjotta, 1987). While the local sec- 
ond harmonic field that arises from the Lagrangian density term is eventually 
incorporated into the solution (see Sec. 8.3.4), it is for the time being assumed 
to be insignificant and the Lagrangian density term is therefore discarded. The 
nonlinear, nondissipative equation of interest here is therefore 

„     Iö2
P    -ßdV ,8ri Vp-4w=7^'W (   ) 

which is the Westervelt equation (Westervelt, 1963). 

We may now proceed to derive, by a straightforward perturbation 
approach, the equation that governs the generation of the second harmonic 
distortion component of the acoustic field. As the acoustic pressure is of (9(e) 
and we have assumed that e <C 1, the acoustic Mach number is, as usual, 
chosen to be the small parameter in the perturbation expansion. The acoustic 
pressure may be expressed p = pi+p2+0(e3), where pi = 0(e) and P2 = 0(e2). 
When this expanded representation of the acoustic pressure is substituted into 
Eq. 8.7, we find, at the leading two orders in e: 

°«:     v2p'-^ = ° (8-8) 

°(e)-       VF2-$-w-p^-cW (8-9) 

In the absence of dissipation the transverse boundary condition is u • n\s = 0, 
where n is the unit vector normal to the surface S. With the use of the 
momentum equation (Eq. 8.3) in nondissipative form, the boundary condition 
may be expressed,1 at 0(e) and C(e2), 

Vpi • n|s = 0      and     Vp2 • n|s = 0, 

lrThe C(e2) boundary condition is, strictly speaking, valid only for planar waveguide 
geometries (Hamilton and TenCate, 1987). For more general geometries, this boundary 
condition is approximate. 
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respectively. By definition A\ = 0{e), and the substitution of the expanded 
representation of the acoustic pressure into the source boundary condition 

(Eq. 8.5) yields, at (9(e) and 0(e2), 

Pilz=o = Ai cos(^i* - ^0     and      Pi\z=o = °- (8-10) 

The equation that governs the second harmonic field, Eq. 8.9, is a linear in- 
homogeneous partial differential equation, which we solve by means of Green's 
function. 

8.1.2    The Use of Complex Field Variables 

We now consider the variables with which the acoustic pressure field 
is to be represented. In the context of linear waves we are able to exploit the 
superposability of solutions and use complex field variables. In the context 
of nonlinear waves, however, solutions do not linearly superpose and we must 
use only real variables. The development of the particular Green's function 
approach used here, the discrete Green's function approach, is far simpler if we 
are able to justify the use of complex field variables. It is shown in this section 
that, for the case of a time-harmonic fundamental field, complex field variables 
may indeed be used at second order. 

The first order system may be extended to result in complex field 
solutions in the usual manner. Instead of being concerned with the solution of 
the wave equation in the real pressure p\ (Eq. 8.8) subject to the real source 
boundary condition (Eq. 8.10), we are concerned with the solution of the wave 
equation in the complex pressure p\ 

subject to the augmented source boundary condition2 

2While we are free to augment the real boundary condition with any imaginary part we 
like, the choice of an imaginary part that is in phase quadrature with the real part is a 
particularly judicious choice that greatly simplifies the resultant solution. 
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where Äi = Axe?^. The terminiation boundary condition remains the ra- 
diation condition. This system, which is the subject of Chaps. 2-4 of this 
dissertation, has the solution 

p^A.F^iv^e-^. (8.11) 

The real, physical acoustic pressure field is recovered from the complex field 
simply by taking the real part: p\ = Re{pi}. 

The real second order system may likewise, with care, be converted 
into a complex system. We begin with the substitution of the complex field 
representation of the real fundamental pressure field 

Pi = ^[Vi+Vx] 

into the right-hand side of the real second order equation (Eq. 8.9): 

1 Ö2p2       -ß   d2 

V^p2 
*\2 

4 dt2       ApQ(£dt2 

ß 

(Pi + P\) 

2 c-2   ,    «*2i 
—ä"I PI + Pi J 

ß        2-2 
—Ä^lPl 

POCQ 

= Re U-^ulvl 

ß        2-2 

POCQ 

We define the real part of the complex second order pressure to be equal to the 
physical second order pressure; i.e., Re{p2} = P2- In other words, the real part 
of p2 is defined 

Re   V^2 - 
ld2P2 

c£ dt2 = Re UAtffi 
POCQ 

If we arbitrarily define the imaginary part of pi such that 
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then the complex second order field pressure is given by 

where the field must satisfy the source boundary condition 

P2U0 = 0. 

What we have done is develop an alternative approach to the solution of Eq. 8.9. 
In the usual approach, the expression for the real fundamental pressure field 
Pi is substituted in the right-hand side and the resultant real inhomogeneous 
equation solved. We have shown here that we may alternatively substitute the 
expression for the complex fundamental pressure field p\ into the right-hand 
side of Eq. 8.12 and solve that equation. The real part of the resultant complex 
solution is the same as the real solution of Eq. 8.9. 

8.1.3    The Infinite Periodic Waveguide Green's Func- 
tion 
We must now solve an inhomogeneous partial differential equation in 

a boundary value problem setting. There are two fundamental Green's function 
solution approaches that may be used. In the first, the boundary conditions 
are incorporated in the Green's function. That is, the Green's function itself 
satisfies the boundary conditions. The Green's function is then convolved with 
the source distribution function (the inhomogeneous term) and the resultant 
field is the solution of the problem. The field satisfies both the differential 
equation and the boundary conditions, and no homogeneous solutions need be 
added. In a sense, the necessary homogeneous solutions have already been 
incorporated in the Green's function. In the second approach, the free-space 
Green's function, which does not generally satisfy the boundary conditions, is 
used. When this Green's function is convolved with the source distribution, the 
resultant field, while being a solution to the partial differential equation, does 
not meet the boundary conditions. In this case, homogeneous solutions of the 
equation must be added to the field in order to meet the boundary conditions. 

The approach used here is a combination of these two approaches. 
The Green's function meets the transverse or periodic waveguide boundary 
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conditions, but does not meet the z or source/termination boundary conditions. 
In other words, the Green's function is an infinite periodic waveguide Green's 
function. When convolved with the source distribution, the resultant field 
meets the transverse boundary conditions, but does not meet the z boundary 
conditions. In order to satisfy these, we must add solutions of the homogeneous 
equation that meet the transverse boundary conditions. The homogeneous 
equation is the classical wave equation, and it has been shown that the solutions 
of the classical wave equation that meet the transverse boundary conditions are 
the nondissipative Bloch wave solutions. In other words, we must simply add 
homogeneous Bloch wave solutions to the field in order to meet the source and 

termination boundary conditions. 

8.1.4    The Discrete Green's Function 

We now consider the infinite periodic waveguide Green's function so- 
lution for the second harmonic field. It is shown that the particular solution 
may be expressed in a form that is much simpler than the usual Green's func- 
tion solution owing to the functional form of the fundamental field, which is 
a progressive Bloch wave field. As the fundamental field is, up to a constant 
factor, identical in every cell of the periodic waveguide, the inhomogeneous 
term in the second order equation, and consequently the resultant generation 
of a second harmonic field is, up to a constant factor, identical in every cell 
of the waveguide. In other words, the cell-to-cell similarity in structure of the 
fundamental field results in a cell-to-cell similarity in the generation of second 
harmonic waves. This pattern in the generation of the second harmonic field 
may be exploited to result in a simpler Green's function type of representation 
of the second harmonic field. This representation, which is referred to here as 
the discrete Green's function representation of the solution, is derived in this 
section. 

The equation for the second order pressure (Eq. 8.12) is a linear inho- 
mogeneous partial differential equation. The first order pressure field appears 
in the inhomogeneous term, which acts as a source distribution that drives 
the second order pressure field. We may think of the inhomogeneous term in 
Eq. 8.12 as being representative of a volume distribution of acoustic sources. 
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In this spirit, we rewrite Eq. 8.12 as 

where 

A(r,i) = 2-V?# (8.13) 
PoCo 

is the (complex) distribution of virtual sources. We next substitute the com- 
plex first order solution (Eq. 8.11) into the expression for the virtual source 
distribution (Eq. 8.13), and find 

ft °° 
A(r,i) = 2-^wM? £ e2j'n9lV?(r - nhe^e'2^. 

PoCo n=0 

Note that the virtual source distribution is expressed as a sum over functions 
that are proportional to x\)\ (r — nhez), the squared fundamental cell wave func- 
tion, which is nonzero only in the nth cell. The virtual source distribution may 
therefore be expressed 

oo 

A(r,t) = J2An(r)e-2^t, 
n=0 

where 
ß An(r) = 2-^wMty?(r - nhez)e

2^n (8.14) 

is the portion of the complex virtual source distribution that occupies the 
nth cell of the waveguide. This partial virtual source distribution is referred 
to as the nth cell source. With these definitions, the inhomogeneous partial 
differential equation to be solved (Eq. 8.12) may be written 

Co oi        n=0 

In this form it is seen that the complex second order pressure ■pi is driven by 
a string of disjoint virtual source distributions, each of which occupies a single 
cell. As the fundamental Bloch wave function in a cell bears a strong resem- 
blance to that in any other cell, the virtual source distribution in one cell must 
likewise bear a strong similarity to that in any other cell. It stands to reason 
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that the second order pressure field that arises from the virtual source distribu- 
tion in a particular cell likewise resembles that which arises from another cell. 
Such an argument is best expressed in terms of a Green's function solution. 

The Green's function solution to Eq. 8.15 is, owing to the time- 
harmonicity of the inhomogeneous term, given by 

oo 

£ An(r')G(r|r')d3r'e- 
n=0 

00 

= W A^rOCtrliVr'e-2^, (8.16) 
n=cr 

where G(r|r') is the Green's function associated with the Helmholtz equation 
for the infinite periodic waveguide.  Note that, as this is the infinite periodic 
waveguide Green's function solution, it is the particular solution only.   We 
must add homogeneous second harmonic Bloch wave solutions to this particular 
solution in order to satisfy the source and termination boundary conditions. 
The substitution of Eq. 8.14 into Eq. 8.16 yields 

p2 = 2^-Au\A\e-2^t T e2^h U2{v' - nhez)G(r\r')d3r', (8.17) 

h = 2JLu
2A2e-2j"lt V e2jngih f tf(r")G(r\r" + nhez)d

3r". (8.18) 

ß_ 
PoCo n=0 

the Green's function solution for the complex second order pressure field. Under 
the shifting transformation r" = r' - nhez, Eq. 8.17 becomes 

Because the Green's function is the infinite periodic waveguide Green's function 
and the periodic waveguide is, by definition, invariant under axial translations 
by nh, the following translation property exists: 

G(r|r' + nhez) = G(r - nhez\r'). 

The field at r due to a source at r' + nhez must be the same as the field at 
r — nhez due to an identical source at r'. Equation 8.18 may therefore be 

expressed 

ß_ 
PoCo „=o 

fc = 2i7wMje-J«t £ e2JnQlh I tf(r")G(r - nhez\v")d3r". (8.19) 
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We see that the total second harmonic pressure field is composed of a sum over 
a series of contributing pressure fields, each of which arises from the virtual 
source distribution in a particular cell. The second harmonic field that arises 
from the virtual source distribution in the nth cell (i.e., the nth cell source) may 

be written 

4n) A2,e2jnqihe-2jUlt}-2-^u;i U\{r")G{r - nhez\r")d\". 

The term in square brackets is recognized to be the square of the complex first 
order pressure field at the center of the cell; i.e., {px{nh, t)}2 = Ay^^e^2^. 
The second order pressure field that arises from the nth cell source may therefore 

be expressed 

p(") = [^(nM)]^-^? [tf(r")G(r ~ nhez\r")d3r". (8.20) 
ßciCn       J 

The [p\(nh, t)}2 term is a measure of the amplitude and phase of the excitation 
of the nth cell source. The remainder of the expression represents the second 
harmonic field due to a cell source of unit excitation. Note that the second 
harmonic field of Eq. 8.20 is, aside from its magnitude, phase, and placement, 
identical for each cell source. This makes sense. The nth cell source is excited 
at a level that is proportional to the squared value of the fundamental pressure 
at the cell center. As the fundamental Bloch wave field is, apart from factors 
of ejqih, identical in each cell of the waveguide, each cell source is, up to factors 
of e2jqih, identical in each cell of the waveguide. The second harmonic field 
that arises from each cell source is therefore, apart from factors of e2jqih and 
placement, identical. 

It is Eq. 8.20 that suggests the concept of a discrete Green's function 
type of approach. In the standard Green's function approach, the Green's 
function is the field that arises from a simple source of unit amplitude and 
arbitrary placement. The field that arises from a more complicated source 
configuration may be expressed as a sum over the fields that arise from each of 
a distribution of simple sources. In our case, the simplest source unit may be 
taken to be the zeroth cell source. All other cell sources are identical, up to a 
constant factor, to the zeroth cell source. The second order pressure field that 
arises from the zeroth cell source is therefore something like a Green's function 



GD(r) = 2-^ui U\{r')G{v\v')d\'. (8.21) 
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associated with this simplest unit source. The total second order pressure 
field may be expressed as a discrete sum over appropriately shaded, phased, 
and placed copies of this simplest unit field. The discrete Green's function is 
therefore defined as 

Prom Eqs. 8.20 and 8.21, the partial pressure field due to the nth cell source 
may therefore be written 

^B) = ßi(nM)]2GD(r-nfce,) 

= i?GD(r - nhez)e
j2ginhe-j2uit. 

Aside from amplitude and phase, each cell source radiates the same second 
harmonic field. The fundamental and second harmonic components of the 
Bloch wave field are therefore given by 

oo 

pi = Anl>i(r) * 5>(r - nhez)e
jnqihe-jUlt 

n=0 

oo 

p2 = Ä$GD(r) * ]T <5(r - nheJeP^e-l™, (8.22) 
n=0 

where again, the second harmonic solution is the particular solution only. 

The problem has been reduced to that of finding an expression for 
Gr>(r). The second harmonic field that arises from the portion of the virtual 
source distribution that occupies the zeroth cell is given by 

c§ dt2 V2^0) - 4^5" = Ao(r)e-2^< 

= 2-^-Au\AWAv)e-2^t. (8.23) 
POCQ 

As p2° (r,i) and GV{T) are simply related by 

$\r,t) = A2
lGD(r)e-^\ (8.24) 

the discrete Green's function is given by 

72/~f   /_\   ,   U2ri    {_\        o    P    ,.2.1.2/ V2CD(r) + -f GD(r) = 2-^u^i(r). (8.25) 
Co POCQ 
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8.2    The Evaluation of the Discrete Green's 
Function 
Here we derive an expression for the discrete Green's function. The 

discrete Green's function is defined by Eq. 8.25, which is an inhomogeneous 
Helmholtz equation, with infinite periodic waveguide boundary conditions. An 
alternative method of solution of Eq. 8.25 is to solve Eq. 8.23 for the second 
harmonic field p^ that arises fr°m tne zeroth cell source, and relate the result 
to the discrete Green's function by way of Eq. 8.24. As the two methods 
are equivalent, we choose the latter method as we are then faced with the 
solution of an actual physical problem. The intermediate results are more 
readily interpreted, and the derivation therefore more easily followed. 

The zeroth cell source problem is itself treated in two parts. The 
virtual source distribution in the zeroth cell is considered to be the sum of two 
spatially disjoint sub-distributions: 

A0(r) = A(wg)(r) + A(s)(r). 

One sub-distribution is the portion of the zeroth cell source that occupies the 
the waveguide section, and is given by 

A(wg)/ x _ / Ao(r)    |*| < /w/2 
^°    l ; ~ \     0       elsewhere   ' 

and the other is that which occupies the scatterers at the ends of the zeroth 

cell, and is given by 

(S)      _ f A0(r)   -h/2 <z< -/w/2  and  lw < z < h/2 
0 vr) - |     o elsewhere. 

As the problem to be solved is linear, the second harmonic fields that arise 
from each of these sub-distributions may be found separately and the results 
added. 

8.2.1    Second Harmonic Generation in the Waveguide 
Sections 
Here we find an expression for the second harmonic field that is gen- 

erated by the portion of the virtual source distribution that occupies the wave- 
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guide section of the zeroth cell of the waveguide. In other words, we wish to 
find the second harmonic field that arises from the nonlinear propagation of the 
first order / and 5-waves in the zeroth waveguide section. This field is given 

by the equation 

V2P2 - \^~ = A<wg)(r)e-
2^, (8.26) 

CQ  Ot 

where , „   „  „ 
A(wg)M _ / 2(/?/poCo>M^(r)    |*| < /w/2 
^°    w ~ I 0 elsewhere. 

The approach is to treat the zeroth waveguide section as a uniform waveguide 
of length /w that is bounded on both ends by semi-infinite periodic waveguides. 
The second harmonic waves that are generated in this finite section of uniform 
waveguide are incident upon, and partially reflected from, the bounding pe- 
riodic waveguides. The incident waves are also partially transmitted into the 
periodic waveguides as freely propagating second harmonic Bloch waves. 

Recall that the fundamental cell wave function ipi(r) is, in the wave- 
guide section, composed of the propagating /-wave/p-wave field and a series 
of evanescent, higher order modal fields that are confined to the near-vicinity 
of the scatterers. It is assumed that the evanescent, higher order modal field 
makes a negligible contribution to the generation of the second harmonic field, 
and is therefore neglected. The portion of the fundamental cell wave function 
that resides in the waveguide section may therefore be expressed 

1 + 91 h 1 + 91 h 

The right-hand side of Eq. 8.26 is therefore given by 

A°    (r)C ~2
Po4   '   1{{^+9/fJ 

+ (^j/fiYjl-ni'-***) + 2_i%_e-^* 1        (8.28) 
V+g/fiJ (1+2//1)2        J 

for \z\ < /w/2 and is zero for \z\ > lw/2. It therefore follows that in the 
waveguide section the second harmonic field is given by the sum of a particular 
and a homogeneous solution, and in the region outside of the waveguide section 
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the solution is given by homogeneous solutions only. The particular solution 
of this equation is given, for \z\ < lw/2, by the expression 

ß     ..   «I 1 \ 
2p0Co 

^
A
UT^TT)  *e>(afcl*-awit) (8-29) V + 9/hJ 

ß     ..    A2 (     9/fl      \     ,.,rt-2fci2-2a;i0   ,       ß     Al 9/fl -2jo>it 

P2 

J2p04       l\l+g/fi) Po$     (1+V/i)2 

The first two terms in the particular solution are the linearly growing forward 
and backward traveling second harmonic waves, respectively, and the third is 
a local (i.e., nonpropagating), spatially uniform second harmonic component, 
which is, for the time being, neglected. It is worth noting, as a simple check, 
that the real part of this particular solution is the particular solution of Eq. 8.9 
with the right-hand side given by the real part of Eq. 8.28, as it should. 

The forward and backward traveling second harmonic waves that are 
generated in the zeroth waveguide section are incident upon the two semi- 
infinite periodic waveguides that bound it. The boundary conditions that must 
be met by the field at the entrances to these periodic waveguides are taken to 
be the usual interface conditions: the acoustic pressure and volume velocity 
associated with the second harmonic field must be continuous across the in- 
terface. These requirements are usually expressed in the form of a reflection 
coefficient. In Sec. 4.2 the reflection coefficient for a conventional wave incident 
upon a semi-infinite periodic waveguide is shown to be R = g/f, where R is 
defined to be the ratio of the reflected to the incident wave amplitude at z — 0. 
The reflection coefficient at the points z = ±lw/2 is, for the second harmonic 
field, therefore R = g/he-jkl". 

With the inclusion of homogeneous wave terms, the second harmonic 
pressure field in the zeroth waveguide section is given by 

2 

'2PDCT1"1 I ! + (///, 
$v = -JJL^AI [ _!__) zem^-^t) + hM^,-.2i) 

2PQ4       \i + g/fij 
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where the superscripts (FT) and (BT) denote the forward and backward trav- 
eling components, respectively. The boundary conditions for this field, which 

may be written 
ABT) 

z=lw/2 

ABT) 

AFT) 

AFT) 

ABT) = 9lh<rik*w 

z=-iw/2 

serve to define the homogeneous wave amplitudes, which are found to be 

hl+)--LJL    ,12^l + (g//2)
2 + 2^//2(g//l)

2 

~    2po4UlAl2    [l+s//i]2[l-(<7//2)
2] 

2 
hi-)__iJ_   A2^^/h + (g/fi)2 + (9/h)2(g/f2) 

~    2p04
Ul   * 2 [l+p//i]2[l-(5//2)

2] 

The total second harmonic field in the zeroth waveguide section is therefore 
given by 

p2 = AiQiwc\z,u2)e-
j^t \z\ < /w/2, 

where 

(L [1 + (g//2)
2 + 2g/f2(g/me^ + [2g/f2 + {g/hf + (g//ig//a)

2]e-J** 

\2 [l+9/fi]2[l-(9/f2)2] 

+ [l+^//i]2 )' 

The function Q(wc)(^,^2) is that which represents the second harmonic field 
in the waveguide section due to the portion of the cell source that occupies the 
waveguide section. 

The amplitudes of the second harmonic Bloch waves that are trans- 
mitted into the semi-infinite waveguides on either side of the zeroth waveguide 
section may be found using the Bloch wave transmission coefficient found in 
Sec. 4.2: T& = 1 + g/f. Again correcting for the phase, the amplitudes of 
the Bloch waves launched into the periodic waveguides that occupy z > lw/2 
and * < -lw/2 are simply TBp2

FT\lw/2)e^k^2 and TBp2
BT\-lv//2)e-^1-/2, 
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respectively. The second harmonic pressure solution outside of the zeroth wave- 
guide section is therefore given by 

p2 = AlQ^F^iz^e-*"*        z > Zw/2 

= AlQ^F^iz^e-i"*        z < -Jw/2, 

where Q(w+> and Q^w~\ defined by 

'[l + 5//2][l+5//2(V/i)2]\ ^+)=-i^a [l+9/fi]2[l-(9/f2)2} 

Q(W-) = AJLUlU ([l+9/f2][g/f2 + {g/hf] 
IPO4; 1WV [i + 5//i]2[i-(^//2)

2] J' 
are the coefficients that represent the amplitudes of the forward and backward 
traveling second harmonic Bloch waves that are generated in the waveguide 
section. 

8.2.2    Nonlinear Scattering 

We now consider the second harmonic field that is generated by the 
portion of the zeroth cell source that resides in the scatterers on either side of 
the zeroth cell waveguide section. This field is given by the equation 

V2Ä-^^ = A«(r)e-^, (8.30) 

where 

AM(r) = / 2(/?/pc4V2,42V'2(r)   -h/2 <z< -Zw/2   and  Zw < z < h/2 
0 1 0 elsewhere. 

In other words, we consider the contribution to the second harmonic field that is 
due to nonlinear scattering. As the periodic waveguide being treated is general 
(i.e., the specific form of the scatterers is unspecified), we give here only a very 
general result in which it is assumed that the nonlinear scattering problem has 
been solved. As an example of the solution of such a problem, the nonlinear 
scattering that occurs in a waveguide loaded with a periodic array of rigidly 
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terminated side branches (such as the isotropic periodic waveguide described 
in the introduction) is calculated in Sec. 8.2.3. 

It was shown in Sec. 8.1.4 that we may solve the full waveguide prob- 
lem simply by finding the second harmonic generation by the virtual source 
distribution in the zeroth cell of the periodic waveguide. The zeroth cell is 
defined to be the volume given by -h/2 < z < h/2. This volume includes the 
zeroth waveguide section, which was the topic of the last section, and half of 
a scatterer on either side of the waveguide section. Our task in this section 
is therefore to find an expression for the second harmonic field generated by 
the portion of the virtual source distribution that resides in these half scatter- 
ed. Consider the scatterer on the z > 0 side of the zeroth waveguide section. 
According to the theory, the left half of this scatterer is associated with the 
zeroth cell, and the right half is associated with the first cell. While such a 
division leads to a very tidy theoretical form, the determination of the second 
harmonic generated by the virtual source distribution in half of a scatterer is 
prohibitively difficult. Instead, we simply divide the magnitude of the virtual 
source distribution in the entire scatterer by two to result in two half-strength 
virtual source distributions. One of the half-strength distributions is associ- 
ated with the zeroth cell and the other with the first cell. Similarly, the virtual 
source distribution in the scatterer on the z < 0 side of the zeroth waveguide 
section is taken to be composed of two half-strength distributions, one of which 
is associated with the zeroth cell and the other with the minus first cell. The 
problem to be solved is therefore the inhomogeneous wave equation (Eq. 8.30) 
with a virtual source distribution given by 

A(S)(T) = f (ß/pQc$)uJ{A\iP\{r)   -h + lw/2 <z< -lw/2, lw<z<h- lw/2 
0 ^ '      | 0 elsewhere. 

Like the original scheme, this division of the virtual source distribution accounts 
consistently for the total distribution. 

As the fundamental field is a forward traveling Bloch wave of ampli- 
tude Ai, the excitation of the virtual source distributions in the scatterers at 
z = ±h/2 is proportional to A\. The resultant second harmonic field must like- 
wise be proportional to A\. While the second harmonic field in the scatterer 
is dependent upon the geometry of the scatterer and cannot be determined 
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generally, the field in the periodic waveguide on either side of the scatterer 
must take the form of forward and backward traveling second haromonic Bloch 
waves. The second harmonic field generated in the scatterer on the right (that 
at z = h/2) couples to a forward traveling second harmonic Bloch wave for 
z > h — lw/2 and to a backward traveling second harmonic Bloch wave for 
z < Zw/2. The amplitudes of these Bloch waves are taken to be Q^K+^A\ and 
Q(K-)A\, respectively. Likewise, the scatter on the left (at z — —h/2) cou- 
ples to a forward traveling second harmonic Bloch wave for z > —lw/2 and 
to a backward traveling second harmonic Bloch wave for z < —(h — lw/2). 
The amplitudes of these Bloch waves are taken to be Q(L+)A\ and Q^L~^A\, 
respectively. Recall that it is only half of these fields that is associated with 
the zeroth cell. The second harmonic field associated with the zeroth cell may 
therefore be expressed as follows. The field in the zeroth cell waveguide section 
(—/w/2 < z < /w/2)is given by 

fa = \Q{-h+)A\F^\z,u2)e-^t + lQ^^A2
1F^(z,u2)e-

j^t, 

and that outside the zeroth cell is given by 

fa = \ (Q{L+) + <2(R+)) A2
1F^\z,oj2)e-

ju"t z>h- U/2 (8.31) 

fa = \ (<2(L_) + Q(R_)) A\F^(z, u2)e-^ z < lw/2 - h. (8.32) 

Note that the second harmonic field in the left and right scatterers is not 
specified as it is not determined. 

8.2.3    Nonlinear Scattering by Side Branches 

As an example of the determination of the second harmonic gener- 
ation by nonlinear scattering we consider the case of the isotropic periodic 
waveguide described in the introduction. The nonlinear scattering may read- 
ily be calculated for such a case as nonlinearity in the scatterer is simply due 
to the nonlinear propagation of the waves in the side branch. For a forward 
traveling Bloch wave of amplitude A\, the fundamental waves incident upon 
the side branch on the right are the /-wave in the zeroth cell and the #-wave 
of the first cell. Likewise, the waves incident upon the side branch on the left 
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are the 5-wave of the zeroth cell and the /-wave of the minus first cell. As the 
side branch is of depth d and is rigidly terminated, the fundamental pressure 
field in the side branch is of the form 

Pi 
= ai(e^V + e2i*1rfe-ifciy')e-^it) (8.33) 

where 7/ = —y is the coordinate along the side branch axis and ax is the ampli- 
tude of the fundamental traveling waves in the side branch. The requirements 
that the pressure field be continuous and that mass be conserved at at the 
side branch entrance results in expressions for the two side branch fields. The 
fundamental field in the left side branch is such that 

ai = AiSi sb 
e-wft + g//        /2 

1+9/fi 
(8.34) 

and that in the right side branch is such that 

'l+g/fxe^h 

a\ = AiSt sb 
Jfci/i/2 

where 

Ssb = 

1+9/fi 

1 

(8.35) 

(1 + 4rt>/2i4wg) + (1 - Ash/2Awg)e
2^d 

is the coefficient of scattering into the side branch. 

Before we proceed to find the second harmonic field generated in the 
two side branches, we must consider the boundary condition that the second 
harmonic side branch field must meet at the side branch entrance. It is again 
assumed that the second harmonic field obeys the same reflection and trans- 
mission laws that a linear field of the same frequency would obey. Consider a 
wave of amplitude a2 and frequency u2 that propagates in the right side branch 
and is incident upon the periodic waveguide. The field in the side branch is 
given by 

p2 = a2(e-^' + /Ue^'), (8.36) 

where R^ is the coefficient of reflection of the wave back into the side branch, 
and the field in the periodic waveguide is given by 

P2 
a2TshF^+\z - h, u^e-M   z > h/2 
a2TshF(-\z,u2)e-^

t <h/2, 
(8.37) 
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where Tsb is the coefficient of transmission of the wave into the periodic wave- 

guide, where it excites outgoing Bloch waves of amplitude Ts\>a2. We again 

impose the requirements of pressure continuity and mass conversation at the 

side branch entrance and find 

2(l+2//2) 
Ts\, — 

Rsh = 

(1 + 2j4wg/4,b)e-^/2 + g/f2(l - 2Awg/Ash)e^^ 

(1 - 2AwJAsh)e-^h/2 + g/f2(1 + 2Awg/Ash)e^V2 

(8.38) 

(1 + 2AvgA4sb)e-^*/2 + g/f2(l - 2AWf,/Ash)eiW 

We may now find the second harmonic field that is generated by the 
portions of the virtual source distribution that occupy the left and right side 
branches. The particular solution of Eq. 8.12 for the generic side branch field 
of Eq. 8.33 is given by 

ß 3    P 2 \   I   j'2fciv' v'e-J2fci(j/'-2d)l e-ju>2t _|_ ,a\e-^1. 
2 p0Co       l l° * J '  PoCo 

With the inclusion of the homogeneous solutions and the exclusion of the local 
term, the general second harmonic solution is given by 

T5
(DT) 

¥2 
h(+)ejk,y' _ iJL 

pfT) h^t 

-uj,n2v'pj2kiy' 
2po^iaiye 

-jkw'   ,   0    ß    . ,  n2^l-j2k1(y'-2d) 

-ju>2t 

+ -^ui^ye 0-jV2t 

2poCg 

where the superscripts UT and DT denote the upward and downward traveling 

components of the solution. The boundary conditions that this field must meet 

are given by 

pim> 

and 

jfT) 

Äm) 

y'=d 

MUT) 

and the resultant solution is given by 

1 

-Rsb, 

piDT) = 3     ß 2 

2p0cjj 
y>eWiy' + ^ 2de2^d 

e-jk2d _ R^eJkid 
Jk2V' -jw2t 
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r>(UT) 
V2 2poCg 

ß 2 _y>e-Vki(y'-2d) + 
2de2jk'd 

-j^y' -ju>2t 

e-jk2d _ i^beJfc2d 

The amplitude of the second harmonic field that is incident upon the periodic 

waveguide from the side branch is therefore given by 

pfr ß ffijkid 

y'=o ■^Wlfl?de-'M - R*fi*»* 
,-juit (8.39) 

The value of oi, the amplitude of the fundamental frequency traveling waves 
in a side branch, is given by Eqs. 8.34 and 8.35 for the left and right side 
branches, respectively. Prom Eq. 8.39, therefore, the amplitudes of the resultant 
second harmonic waves that are incident on the periodic waveguide from the 
left and right side branches are also known. As the coefficient of conversion 
of these second harmonic conventional waves into Bloch waves is given by 
Eq. 8.38, the second harmonic field everywhere in the periodic waveguide is 
known. The quasilinear Bloch wave generation coefficients (see Eqs. 8.31 and 
8.32) for scattering by side branches are therefore given by 

g(L+) = _. ß ejk1(h+2d) 

Po4Ulde-^d - Rs*e+ik*d 

Q(L-) = Q(L+)e-j«/i 

Q (R-) - _ ■u\d- 
0jkx{h+2d) .J_ 

1p0cTlU'e-i>»d - R^e+i^ 

g(R+) = Q(R-)e-to\ 

8.2.4    The Discrete Green's Function 

Recall that the discrete Green's function is simply proportional to 
the second harmonic field that is generated by the portion of the virtual source 
distribution that occupies the zeroth cell: 

p(°>=yl?GD(r)e-J'wat. 

As this second harmonic field has been determined, an expression for the dis- 
crete Green's function may now be written down. The second harmonic field 
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in the zeroth cell waveguide section is composed of three fields: (1) that gener- 
ated by the fundamental /-wave/p-wave field, (2) the forward traveling second 
harmonic Bloch wave field generated in the left scatterer (that at z = —h/2), 
and (3) the backward traveling second harmonic Bloch wave field generated in 
the right scatterer (that at z = h/2). The second harmonic field on the z > 0 
side of the zeroth cell is simply a forward traveling second harmonic Bloch wave 
that is contributed to by all three cell source regions (the waveguide section 
and the left and right scatterers). The second harmonic field on the z < 0 
side of the zeroth cell is a backward traveling second harmonic Bloch wave 
that is likewise contributed to by all three source regions. The discrete Green's 
function may therefore be expressed 

Gj^itf-Jfowa)   z<lw/2-h 
GD(V)={  G

(
S\T,UJ2) \z\<lw/2 (8.40) 

G^
]
F^(T,U2)   z>h-lw/2 

where 

and 

Gir> = 0<w"> + \ (Q<L-> + Q<"->) 

Gb
+) = Q<w+> + \ (Q™ + Q(R+>) 

2 
are (frequency dependent) constants and 

G(S\r,uj2) = \Q^F^\V,U2) + 
l-Q^F^{v,u2) + Q^c\r,u2) 

has a spatial dependence. It is seen in Eq. 8.40 that the virtual source distri- 
bution in the zeroth cell excites not only forward traveling second harmonic 
Bloch wave, but a backward traveling one as well. In Fig. 8.1 is shown a plot 
of the magnitudes of GD and G^ , which are proportional to the amplitudes 
of these forward and backward traveling Bloch waves. When the fundamental 
frequency is such that either the fundamental or the second harmonic lies in 
a stopband, then \GQ\ — \GQ \. The forward and backward traveling Bloch 
waves generated in the zeroth cell are of equal amplitude. 

To conclude, we have considered the problem of second harmonic 
generation in a semi-infinite periodic waveguide in order to (1) show that the 
particular solution may be cast in terms of a discrete Green's function, and 
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Figure 8.1:  The discrete Green's function coefficients G^ and G[)"
)
 that determine the 

amplitude of the forward and backward traveling Bloch waves generated by a cell source. 
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(2) solve for the discrete Green's function. Recall that the discrete Green's 
function is an infinite periodic waveguide Green's function (see Sec. 8.1.3). That 
is, the sum of appropriately shaded, phased, and placed copies of the discrete 
Green's function (as seen in Eq. 8.22), results in an expression for the second 
harmonic particular solution. Homogeneous second harmonic solutions must be 
added to the particular solution in order to satisfy the source and terminiation 
boundary conditions. As the z boundary conditions are not incorporated in 
the discrete Green's function, it is the appropriate discrete Green's function for 
a finite periodic waveguide as well as for the semi-infinite periodic waveguide. 
The only restriction is that the fundamental field must either be progressive or, 
as far as second harmonic generation is concerned, effectively progressive (i.e., 
the backward traveling fundamental Bloch wave amplitude must be small). In 
other words, we have derived the infinite periodic waveguide discrete Green's 
function associated with any progressive or effectively progressive fundamental 
Bloch wave field. 

8.3    The Particular Solution 
In this section the particular solution for the finite periodic waveguide 

problem is found. While this field does not meet the z boundary conditions, 
its general form tells us a great deal about the generation of a second harmonic 
field by a forward traveling fundamental Bloch wave. It is found that the for- 
ward traveling fundamental Bloch wave generates both forward and backward 
traveling second harmonic Bloch waves. It also generates a second harmonic 
field that is identified as a local field. As in the case of nonlinear dispersive 
conventional wave propagation, the Bloch wave dispersion serves to disrupt 
the synchrony of the nonlinear interaction between fundamental and second 
harmonic. The propagating second harmonic waves oscillate in amplitude and 
the wave as a whole never undergoes any large net distortion. In addition, it 
is found that the effective nonlinearity of the Bloch waves differs from that of 
conventional waves. 

As is pointed out at the end of Sec. 8.2, the infinite periodic waveguide 
discrete Green's function may be used for the finite periodic waveguide problem 
provided the backward traveling fundamental Bloch wave is of sufficiently small 
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amplitude. The source boundary condition is assumed to be given by3 

Pi\^> = **-**' 

P2U = Ä2e-^. (8.41) 

The solution of the problem at first order is therefore given by 

*<'•*>= I + RX^ [F(+)(r,Wl) + R^{N-l)hF^^\ ^ 

where Ax = Äx/{\ + ABe2j<7l(;v"1)/l) is the forward traveling fundamental Bloch 
wave amplitude. The argument that the backward traveling fundamental Bloch 
wave is negligible hinges on a combination of the effect of dissipation and 
the frequency dependence of the reflection coefficient RBM- Near stopband 
frequencies the effect of dissipation is enhanced and the reflected fundamental 
Bloch wave has relatively small amplitude (i.e., e~aiNh is small compared to 
one). Away from stopband frequencies, where the effect of dissipation is not 
as strong, the reflection coefficient i?B = -g/fi is small (see Fig. 3.8). As the 
forward traveling fundamental Bloch wave has been assumed to be only weakly 
nonlinear, it is expected that the backward traveling fundamental Bloch wave 

propagates linearly. 

8.3.1    The N Cell Particular Solution 

In order to derive a useful form of the particular solution, we consider 
the second harmonic field at some point r in the mth cell of the periodic wave- 
guide (i.e., |e* ■ r - mh\ < h/2). From Eq. 8.22, the second harmonic field is 

given by 

p2 = Ä2
lj: GD(T - nheJeW^e-™ 

3This is a practical consideration. While in theory we could have a source boundary 
condition that held the second harmonic field at zero amplitude, in practice we have no such 
source. Instead we simply account for the second harmonic field that propagates back to the 
source in the boundary condition. 
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The nth term in the sum represents the contribution to the field at r due to 
the virtual source distribution in the nth cell. We now break up the sum over 
the N — 1 cells into three parts: 

{m-l 

E GD(r - nhez)e
2»inh + GD(r - mhez)e

2"imh 

n=0 

N-l 1 
+   E   CD(r - nhez)e

2jqinh \ e'^. (8.42) 
n=m+l J 

The first term represents the field in the mth cell due to the cell sources in the 
zero through m-l cells (i.e., all cells upstream of the mth cell). The second 
term represents the field in the mth cell due to the cell source in that cell, and 
the third term represents that due to the cell sources in the m + 1 through 
N —\ cells (i.e., all downstream cells). With consideration of the z component 
of the arguments of the discrete Green's functions that appear in Eq. 8.42, that 
equation may, using the definition of the discrete Green's function (Eq. 8.40), 
be rewritten 

{m-l 

E G^F^(T - nhez,u2)e
2^nh + G^r - mhex,u2)e

2inmh 

n=0 

N-l 1 
+   E   G^F^ir-nhe^yV^W-i"*.       (8.43) 

n=T7i+l J 

The series that appear in Eq. 8.43 may be simplified by consideration of the 
translation properties of the Bloch wave functions: 

F(+)(r - nhez,u2) = F^+\r,u2)e-
jng2h 

F(_)(r - nhez,uj2) = F{-\r,u2)e
inq2h. 

Equation 8.43 may therefore be expressed 

h = A2 j GD
+) (Vei^-^A F^\v,u2) + Gg>(r - mhez,u2)e

2^mh 

+G'D"
)
 (   E   ej(291+92)n'1   F(-)(r,w2)   e-^. (8.44) 

\n=m+l / J 
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We see that these three terms represent (1) a forward traveling Bloch wave 
that arises from the upstream cell sources, (2) a term due only to the cell 
source in the mth cell, and (3) a backward traveling Bloch wave that arises 
from downstream cell sources. Both of the series in Eq. 8.44 may be summed, 
and the resultant components of the particular solution may be written 

pr\r,t) = A\G^e^-^^m-x)hM{^ " ft/%ffiF(+)(r,^' (8.45) 2     v     ' sinful - 02/2)h] 

*r (r,t)=A\Gw^^siR[{qi+f/2)jN;;':m)h] 
V2

     v ' ;        l   D sm[(qi + <72/2)h\ 

•F(-)(r,o;2)e-
J'W2t        (8.46) 

p2
L)(r,t) = i2eJ'(29im/'-"2t)G'S)(r - m/ie2,u,2), 

= \pi(mheZ)t)}2G^\r - mÄe„wa), (8.47) 

where p2 = p2
FT) + p2

BT) + P^ ■ The first two components of the particular 
solution have been labeled (FT) and (BT) as they represent the forward and 
backward traveling Bloch wave components of the solution. The third com- 
ponent differs from the first two in that its magnitude in a particular cell is 
dependent only upon the magnitude of the fundamental field in that cell. In 
other words, the third term represents a locally generated second harmonic 
field and is, in the spirit of nonlinear conventional wave theory, labelled with 
an (L). Note that in any particular cell, the value of the local term is spatially 
dependent, but the overall amplitude of the local term depends only upon the 
value of the fundamental field at the cell center. 

8.3.2    The Forward Traveling Second Harmonic Bloch 
Wave 
As was found to be true in the case of linear Bloch wave pulse prop- 

agation (Chapters 4 and 5), the form of the Bloch wave field is most easily 
interpreted when we consider the analogous conventional wave field. To gen- 
erate this field we simply evaluate the Bloch wave field at the cell centers (at 
r = mhez) and replace the resultant mh terms by z. Recall that the analogous 
conventional wave field and the Bloch wave field are equal at the cell centers 
and generally differ elsewhere. 
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Figure 8.2: The amplitude of the forward traveling Bloch wave component of the second 

harmonic field. The particular trajectory shown is for the case of a 675 Hz, 144 Pa (e = .001) 

fundamental Bloch wave in the absence of dissipation. 
AS-94-772 

The analogous conventional wave field associated with the forward 
traveling second harmonic component of the particular solution (Eq. 8.45) is 

pTT)(z,t) = ÄiG£>e (+).-J(qi-q2/2)/t
Sin[(gl ~ Qi/2)Z] J\(qi+q2/2)z-U2t\. 

sin[(gi - qi/2)h] 
(8.48) 

Owing to the sin[(g,i — (72/2)2] term, the forward traveling Bloch wave oscillates 
in amplitude as it propagates. The wave amplitude begins at zero at 2 = 0, 
grows with increasing z, peaks, and then returns to zero (in the nondissipative 
case) at z = IT/\K\ — K2/2|, where K = Re{q} (see Fig. 8.2). The oscillations are 
due to the fact that the fundamental and the second harmonic do not, owing to 
the effect of dispersion, remain in phase as they propagate. This is a well known 
effect in the context of nonlinear dispersive conventional waves. In the absence 
of dispersion, the second harmonic that is generated at some point in the field 
always adds constructively to that generated at another point. The interaction 
between the fundamental and second harmonic fields is resonant and the second 
harmonic wave (to 0(e2)) grows linearly with distance as it propagates. The 
second harmonic field constantly accumulates energy and eventually obtains a 
large amplitude. In the presence of dispersion, the fundamental and the second 
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Figure 8.3: The characteristic phase synchrony distance Lps in the nondissipative case. 
AS-94-773 

harmonic waves go in and out of phase with one another as they propagate. The 
resonance is disrupted and the second harmonic field consequently oscillates in 
amplitude. The characteristic distance over which the fundamental and second 
harmonic remain in phase with one another is termed the "phase synchrony" 

distance and is given by 
■^ps — 

7T 

|«1 - K2/2\' 

Note that the phase synchrony distance is also the spatial period of the oscil- 
lations in the second harmonic wave amplitude. This characteristic phase syn- 
chrony length, which is shown plotted in Fig. 8.3, is a measure of the strength 
of the dispersion with respect to its role in the disruption of second harmonic 
growth. Where the characteristic length is very small, the dispersion is very 
strong, and the resultant generation of a second harmonic field is strongly dis- 
rupted. As such, the characteristic phase synchrony length is a measure of 
the degree to which nonlinear effects may be nullified by the introduction of 

dispersion into a wave medium. 

As the oscillations in the amplitude of the forward traveling second 
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harmonic Bloch wave bears such a marked similarity to those found for the 
case of nonlinear dispersive conventional waves, we investigate the similarity 
further. Consider, for example, the frequency domain Korpel wave equation 

dp     . , _        .     ß     1 

where 
/oo 

p(z, t)ejutdt 
-oo 

is the frequency domain acoustic pressure. The Korpel equation is one that is 
used to model the propagation of conventional waves with dispersion given by 
q{u) and quadratic nonlinearity (Korpel, 1980). Given the real source boundary 
condition p(z,t)\z==0 = J4I cos(wi£), the (complex) solution is given, to second 
order, by 

Pi = Aie?^iz-Ult) 

p2 = -jP^A^K* ~ ft/2)V*4Wa),-M (8.49) 
2p0cS q\ - g2/2 

In the absence of dispersion (and dissipation) qt — q2/2 = 0, and the second 
harmonic solution reduces to 

p2 = -jJL-wlA
2

lze>fo1+n/2)z-u»t\ (8.50) 
2poCo 

An example of the dispersive and nondispersive second harmonic solutions are 
shown in Fig. 8.4. When z « Lps the second harmonic amplitude in both cases 
increases linearly with distance. Where the nondispersive solution continues to 
grow linearly with distance, the dispersive solution returns, at z = Lps to zero 
amplitude. This is an example of the disruption of nonlinear distortion by 
dispersion. 

A comparison of Eqs. 8.48 and 8.49 shows that the functional forms of 
the conventional wave field and the forward traveling component of the Bloch 
wave field are very similar. The forward traveling Bloch wave component of 
the solution (Eq. 8.48) may be written 

PTW) = -j^iffrM8in[(gl " *{*)zU«+»n*-*»\     (8.5i) 
2poCg qi - 92/2 
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Figure 8.4: Characteristic dispersive and nondispersive second harmonic amplitude trajec- 

tories for nonlinear conventional wave propagation. 
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[l+9/f2][l+9/f2(g/h)2} , 2d       e^h+^ + <Ssbisb 

[1 + 9/fi]2[l - {g/h)2) h e-M - RsteW [1 + g/ftf 

([1 + g/hJ«K ]2 + [e-mh + g/h]2) (<7l ~ g2/2)fe      „-jfo-g,/^ 

sin[(<7! - 92/2)A] 

Aside from the frequency dependent factor T, the conventional and Bloch wave 
solutions (Eqs. 8.49 and 8.51) are identical. Only the magnitude and not the 
form of the second harmonic fields differ. The forward traveling second har- 
monic Bloch wave is generated as if the coefficient of nonlinearity were Tß 
instead of ß. We therefore identify the effective coefficient of nonlinearity for 
second harmonic generation by Bloch waves as 

When a uniform waveguide is made periodic, the system not only becomes dis- 
persive, but becomes effectively either more or less nonlinear as well. The ratio 
of the Bloch wave to the conventional wave coefficient of nonlinearity is shown 
in Fig. 8.5. In some ranges of frequency near the stopband edges, nonlinearity 
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Figure 8.5: The effective coefficient of nonlinearity for Bloch waves. 
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affects the Bloch wave over ten times more than it affects a conventional wave 
of equal amplitude. In other frequency ranges, the opposite is true. 

The effective increase in nonlinearity is due to several effects. In a 
nondispersive conventional wave field the second harmonic wave grows linearly 
with distance as the fundamental propagates (see Eq. 8.50). In having propa- 
gated a distance h, the fundamental generates a second harmonic wave field of 
some given amplitude. In the case of a Bloch wave, the fundamental /-wave 
generates a second harmonic wave in much the same manner. There is, how- 
ever, an additional second harmonic wave field generated by the <?-wave and by 
the fields in the scatterers. When these second harmonic fields add construc- 
tively, the fundamental Bloch wave generates more second harmonic energy per 
unit length than does the conventional wave. The overall effective propagation 
distance is larger for the Bloch wave than for a conventional wave. In addition, 
particularly near second harmonic stopbands, the second harmonic level may 
be increased by resonant amplification. It should also be noted that there is 
also a somewhat artificial increase (or decrease) in the effective nonlinearity 
that comes about as an artifact of the normalization of the Bloch wave func- 
tions (see Sec. 3.5). In passbands in which the phase of g/f\ is n0ir, where n0 

is an odd integer, the /-wave amplitude is larger than that of the Bloch wave 
itself, and the second harmonic field generation appears to be abnormally large. 
Note also that in some frequency ranges the effective nonlinearity is decreased. 
This occurs in frequency ranges in which the second harmonic field generated 
in a waveguide section and that generated in the two neighboring side branches 
add destructively, and the fundamental Bloch wave consequently generates less 
second harmonic energy per unit length than a conventional wave. The Bloch 
wave function normalization also causes, in some frequency ranges, a decrease 
in the effective nonlinearity. 

Just as the phase synchrony distance is a measure of the strength 
of the dispersion, there is a characteristic distance that is a measure of the 
strength of the nonlinearity. The characteristic length scale associated with 
nonlinear effects in conventional waves is the shock formation distance, defined 
as 

La = -A- = "^- (8-52) 
ßtki      ßujx\Ai\ 
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The shock formation distance is the distance at which shocks first appear (in 
that absence of dissipation) in an initially sinusoidal wave field. If we consider 
only the solution at second order, as we have here, the shock formation distance 
is that at which the amplitude of the linearly growing second harmonic wave 
(see Eq. 8.50) becomes half the amplitude of the fundamental.4 Even when 
dissipation and/or dispersion mechanisms are present in the system, the shock 
formation distance is valuable as a measure of the strength of the nonlinear 
effects that act on the wave. The characteristic length scale associated with 
nonlinearity in a Bloch wave is simply that shown in Eq. 8.52 with ß replaced 

by |0B|: 

The conventional and Bloch wave shock formation distances are shown for 
acoustic Mach numbers of e = .001 and e = .01 in Fig. 8.6. 

Evidently, the introduction of periodicity into a waveguide affects 
the nonlinear generation of the forward traveling second harmonic field in two 
distinct ways: (1) through the modification of the effective nonlinearity of the 
medium, and (2) through the introduction of dispersion. The modification of 
the nonlinearity of the medium affects the rate at which nonlinear distortion 
effects occur. The Bloch wave distorts at a rate that generally differs from 
a conventional wave of identical amplitude. The effect of the dispersion that 
is introduced when the waveguide becomes periodic is to limit the net degree 
of nonlinear distortion that occurs. The synchrony of the fundamental and 
second harmonic is disrupted and the resultant peak amplitude of the second 
harmonic field becomes limited, as is seen clearly in Fig. 8.4. 

The net amount of (forward traveling) second harmonic distortion 
that the Bloch wave undergoes is dependent upon the effective nonlinearity 
of the system and the degree to which the dispersion is able to oppose this 
nonlinearity. As the shock formation distance and phase synchrony distance 
quantify the nonlinearity and dispersion independently, we now find the com- 
bination of these quantities that reflects the net degree of wave distortion. The 

4Note that the second order solution becomes invalid long before the shock formation 
distance. 



224 

0   200  400  600  800  1000 1200 1400 1600 1800 2000 

Fundamental Frequency (rfe) 

Figure 8.6:   The shock formation distance for Bloch and conventional waves of acoustic 

Mach number e = .001 and e = .01. 
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net amount of nonlinear distortion that a Bloch wave undergoes may be quan- 
tified by the ratio of the peak second harmonic amplitude to the fundamental 
amplitude. From Eq. 8.51, the peak second harmonic amplitude, which occurs 
at z = Lps/2, is in the nondissipative case given by 

|P2     l*=^~2^Ul\Kl-K2/2\- (8-53) 

Note that it has been assumed that both the fundamental and second harmonic 
frequencies lie in passbands. If either lies in a stopband (or if dissipation is 
present) then the amplitude is less than that predicted by Eq. 8.53. From 
Eq. 8.53 we see that the peak second harmonic level is increased for large 
effective nonlinearity (large /5B) and is decreased for strong dispersion (large 
|«i — «2/2|). The ratio of the peak second harmonic level to the fundamental 
field level may be written simply 

(8.54) IP2       U=Lps/2  _    1   -kps 

\Äi\ 27T Lsf 

The ratio of the phase synchrony distance to the shock formation distance is 
a measure of the net effect of nonlinearity as opposed by dispersion. A small 
shock formation distance indicates a strongly nonlinear wave and the resultant 
second harmonic peak is large. Strong dispersion is associated with a small 
phase synchrony distance and the resultant second harmonic level is small. In 
Fig. 8.7 is shown a plot of the ratio of these two distances for an acoustic Mach 
number of e = .001. Over nearly the entire range of frequencies the effect of 
nonlinearity is very effectively suppressed by the dispersion. While the curve 
shown is, strictly speaking, only valid in the nondissipative case in which both 
the fundamental and second harmonic frequencies lie in passbands, attenuation 
only serves to further suppress the second harmonic level. 

What we have done is characterize and quantify the nonlinear distor- 
tion of Bloch waves by way of analysis of only the forward traveling component 
of the second harmonic distortion field. What of the backward traveling and 
local components? It is shown in the next two sections that, while these latter 
two components of the field are not negligible, they are smaller in amplitude 
than the forward traveling component. The forward traveling component alone 
then, for the most part, determines the net amount of distortion that is under- 
gone by the Bloch wave. 
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Figure 8.7: The ratio of the phase synchrony to the shock formation distance (divided 

by 2ir) for an acoustic Mach number of e = .001. In the passbands (where the curve is a 

solid line) this ratio is equal to the peak forward traveling second harmonic Bloch wave level 

relative to the fundamental level. In the frequency ranges where attenuation is significant 

(where the curve is dotted) the actual peak level is smaller than that indicated. 
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8.3.3    The Backward Traveling Second Harmonic Bloch 
Wave 

The backward traveling Bloch wave component of the particular solu- 
tion is, like the forward traveling component, most readily analyzed when cast 
in the form of an analogous conventional wave field. We evaluate Eq. 8.46 at 
r = mhez and replace mh by z to result in 

£(BT),     t) = ^2C(-)ci(q, W2Whsin[(gl + Q2^)(Nh ~h~ z)] ^-q^z-^t] . 
V 1   D sm[(qi + q2/2)h] 

(8.55) 

The backward traveling Bloch wave component, like the forward traveling com- 
ponent, oscillates in amplitude with distance, though at a very different spatial 
frequency. Where the spatial frequency of oscillation is KI-K2/2 for the forward 
traveling Bloch wave (see Eq. 8.48), it is KX + K2/2 for the backward traveling 
Bloch wave. The wave begins with an amplitude of zero at z — (N — l)h (at 
the waveguide termination) and grows in the negative z direction, the direction 
of propagation of the wave. The amplitude then peaks and decreases back to 
zero (in the absence of dissipation) at z = 7T/(KI + «2/2) and the cycle repeats. 
While the oscillation period appears to be given by TT/(KI + K2/2), recall that 
Eq. 8.55 only has physical meaning at the cell centers (i.e., at z = mh). The 
analogous conventional wave field only carries information as to the overall 
amplitude of the /-wave/5-wave field at the cell center. Prom the cell cen- 
ter out, the field has the form of the cell wave function ip2(r,u>2). The actual 
oscillation period is therefore the low spatial frequency alias of the apparent 
period IX/{K\ + K2/2). The backward traveling Bloch wave amplitude is shown 
in Fig. 8.8 as a function of distance for the case of a 675 Hz, e = .001 (144 Pa) 
fundamental Bloch wave. The solid lines are the analogous conventional wave 
amplitudes from Eq. 8.55 and the circles represent the points at which the anal- 
ogous conventional wave field corresponds to the actual Bloch wave solution. 
Owing to this spatial aliasing effect, the actual spatial period of the backward 
traveling Bloch wave is always greater than or equal to the apparent period 
7T/(KI + AC2/2). 

In Fig. 8.9(a) is shown the amplitudes of the forward and backward 
traveling Bloch wave components of the second harmonic field for the case of 
a 675 Hz, e = .001 (144 Pa) fundamental Bloch wave.  As is demonstrated in 
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Figure 8.8: The spatial aliasing effect in the backward traveling Bloch wave component of 

the second harmonic field. The amplitude of the analogous conventional wave field is shown 

for the particular case of a 675 Hz, e = .001 (144 Pa) fundamental Bloch wave in the absence 

of dissipation.   The circles denote the amplitude at the cell centers, where the analogous 

conventional wave and the Bloch wave amplitudes coincide. 
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this example, the forward traveling second harmonic Bloch wave typically has a 
substantially larger spatial period and amplitude than the backward traveling 
wave. Both effects are consequences of the lack of synchrony between the 
fundamental and the second harmonic. The forward traveling second harmonic 
Bloch wave typically maintains a greater degree of phase synchrony with the 
fundamental than the backward traveling second harmonic wave does. The 
exception occurs when (K\ + «2/2)/i ^ 27rn, where n is an integer (note that 
this is also a spatial aliasing condition). In that case the backward traveling 
second harmonic wave and the fundamental wave become synchronous. The 
spatial beat frequency of the backward traveling Bloch wave becomes very low 
and the amplitude becomes very large. This resonant feeding of energy into the 
backward traveling Bloch wave is, however, difficult to observe as the backward 
phase synchrony condition («i + K,2/2)h ~ 27m is only met near stopband edges, 
where the attenuation of the backward traveling wave is very large. Where the 
forward traveling wave is proportional to e^9l~q2^z

1 the backward traveling 
wave is proportional to e^91+q^2^z, and is therefore very strongly attenuated 
near the stopband edge.   In practice, therefore, the forward traveling Bloch 
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Figure 8.9: The forward and backward traveling Bloch wave amplitudes for the case of 

a 675 Hz, e = .001 (144 Pa) fundamental Bloch wave. In (a) is shown the two amplitude 

trajectories, and in (b) is shown the trajectory of the resultant compound field amplitude. 
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wave has a larger amplitude and lower spatial beat frequency than the forward 
traveling Bloch wave. The case shown in Fig. 8.9(b) is therefore, away from 
stopbands, typical. The sum of the forward and backward traveling second 
harmonic Bloch waves has an amplitude trajectory that is very similar to the 
forward traveling Bloch wave but has ripples that are due to the presence of 

the backward traveling wave. 

In Fig. 8.10 is shown the maximum amplitudes of the forward and 
backward traveling second harmonic Bloch waves for the case of a fundamen- 
tal Bloch wave with an acoustic Mach number of e = .001. For simplicity, 
it is assumed that there is no attenuation. The maximum amplitude of the 
backward traveling wave is smaller than that of the forward traveling wave 
except at frequencies for which either the fundamental or second harmonic lies 
in a stopband, where the amplitudes are equal. In and near the stopbands, 
however, the attenuation that the backward traveling Bloch wave undergoes is 
very large, and the indicated maximum will not be realized. Note that in the 
vicinity of 1950 Hz the backward traveling Bloch wave amplitude exceeds that 
of the forward traveling wave. This is an example of the backward wave phase 
synchrony condition. 

8.3.4    The Local Second Harmonic Field 

We now consider the local Bloch wave term (Eq. 8.47). Up to this 
point, the locally generated second harmonic components of the field have 
been taken to be insignificant and have therefore been discarded. In Sec. 8.1.1 
it is argued that the Lagrangian density term gives rise to only a local second 
harmonic field and is therefore discarded from the nonlinear wave equation. 
Similarly, in Sec. 8.2 a local second harmonic field term is identified and is like- 
wise discarded (see Eq. 8.29). While the neglect of these terms is a standard 
procedure, the justification is based on the behavior of nonlinear nondispersive 
conventional waves. In the absence of dispersion, the nonlinearly generated 
propagating second harmonic field remains in phase with the virtual source 
distribution (i.e., «i = «2/2), and the resultant second harmonic field accu- 
mulates energy monotonically (see Fig. 8.4). The second harmonic field that 
is brought about by this resonant generation pathway easily dominates the 
locally generated second harmonic field and we are justified in discarding the 
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Figure 8.10: The peak forward traveling (FT) and backward traveling (BT) second har- 

monic Bloch wave amplitudes relative to the fundamental amplitude. The acoustic Mach 

number is e = .001 (144 Pa), and it is assumed that there is no attenuation. In the stop- 

bands (where the curves are confluent), the attenuation is significant and the actual levels 

are smaller than indicated. 
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local terms. In the presence of dispersion, however, the resonant feeding of en- 
ergy into the second harmonic field is disrupted and, as we have seen, the field 
does not grow monotonically but oscillates in amplitude. When the dispersion 
is strong (i.e., when Lps is very small), the peak amplitude of the propagating 
second harmonic field is very effectively suppressed by the dispersion and the 
discarding of the local terms is no longer justified (see Figs. 8.7 and 8.10). In 
a sense, the propagating second harmonic field has itself become locally gen- 
erated. It is effectively only contributed to by the virtual source distribution 
within a characteristic phase synchrony distance of the observation point. 

While we have discarded terms associated with the locally generated 
second harmonic field, it is a straightforward matter to back track and account 
for the previously discarded terms. These terms may easily be incorporated 
in the Bloch wave local effect term shown in Eq. 8.47. Local field components 
arise from the term on the right-hand side of Eq. 8.7 (see, for example, the 
third term on the right-hand side of Eq. 8.29) and from the Lagrangian density 
term in Eq. 8.6. With the inclusion of these terms, the local second harmonic 
field in the waveguide sections becomes 

s(L) p\ >(r,t) = pi(mheg,ty (8.56) 

The analogous conventional wave representation of the local field may be writ- 
ten 

where 

(I-0//1XI+0//2) (#>.{^>+^>)-^(^ + g/h){i-g/h) 

ß-i    g/fx    \ 
Po4 (i+g/fi)2) 

Recall that the analogous conventional wave field coincides with the physical 
second harmonic pressure field only at the cell centers (z = mh). Just as 
GD

+)
 and G^ represent the amplitudes of the forward and backward traveling 

Bloch waves generated by the zeroth cell source, the coefficient Gu represents 
the amplitude of the locally generated second harmonic in the zeroth cell. In 
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Figure 8.11: The discrete Green's function coefficient GD that determines the amplitude 

of the local second harmonic field in a cell. Included in the plot are the coefficients Gp and 

Gfo\ which determine amplitudes of the forward and backward traveling second harmonic 

Bloch wave generated in a cell. 

AS-94-781 



234 

-20 

PQ 
T3 

<^ 

-40 

CM 

f& -60 

-70 

-50 

200      400 600      800     1000    1200    1400 
Fundamental Frequency (Hz) 

1600    1800    2000 

Figure 8.12: The peak levels of the forward traveling (FT), the backward traveling (BT), 

and the local (L) components of the second harmonic field relative to the fundamental level 

for an acoustic Mach number of e = .001. It is assumed that there is no attenuation. At 

stopband frequencies, where attenuation is significant, the propagating field amplitudes are 

smaller than those indicated. 
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Fig. 8.11 is shown a plot of \G^\ as compared to \Gp\ and \G^\. The lo- 
cal second harmonic field generated in a cell is indeed generally comparable in 
amplitude to the propagating second harmonic field generated in a cell. The 
propagating field, however, accumulates over a characteristic phase synchrony 
distance, and the magnitudes of the coefficients are therefore not a direct re- 
flection of the resultant propagating second harmonic field amplitudes. The 
peak amplitudes of the forward traveling, backward traveling, and local second 
harmonic fields are shown in Fig. 8.12 for the case of an acoustic Mach number 
of e = .001. While in some ranges of frequency the local field is not significant 
as compared to the forward traveling Bloch wave field, it is clear that this is not 
true for all frequencies. Particularly where the dispersion is strong and very 
effectively suppresses the accumulation of large propagating second harmonic 
field levels, the local field is significant. 

8.4    The Full Second Harmonic Solution 
We may now add homogeneous second harmonic Bloch wave solu- 

tions to the particular solution to satisfy the source and termination boundary 
conditions. The total second harmonic field may be written 

P2 = P^ + P2BT) + 4L) + H^F^e-M + H^F^e'^, 

where the first three terms represent the particular solution and the other two 
represent the homogeneous solution. The source and termination boundary 
conditions determine the homogeneous wave amplitudes, which are given by 

„(+) = -9/hpr\{N - l)hex) + [p2
BT)(0) +p2

L)(0) - Ä2)e-^N-^ 
g/f2em(N-l)h _ e-jq2(N-l)h 

Hi-) = 9lhpr\{N - l)hez) - [pfT)(0) + p2
L)(0) - Äüg/heßW-W 

where p2(r) is defined such that p2(r, t) = p-2(T)e~ju^t and we have used p2
FT) (0, t) 

p2
BT\(N-l)hez,t) = 0. 

The measurement of the second harmonic field is the most straight- 
forward of the measurements.   The microphone is used in the flush mount 
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configuration (see Fig. E.2) and the signal routed to the spectrum analyzer. 
The spectrum analyzer is programmed to report the magnitude and phase of 
the fundamental and second harmonic components of the signal. While the 
magnitude of the second harmonic component is the quantity in which we are 
interested, the magnitude of the fundamental and the phase of the second har- 
monic relative to the fundamental must be measured at the entrance to the 
periodic waveguide in order to compare the measured second harmonic ampli- 
tude trajectory with theory. 

In Fig. 8.13(a) is shown the amplitudes of the various components 
of the second harmonic field for a 650 Hz, 135.7 dB (e = .0012) fundamental 
Bloch wave. In Fig. 8.13(b) is shown the resultant total second harmonic field 
amplitude along with measurements. The spatial beats associated with the 
forward traveling second harmonic is clearly evident in the measurement. It 
is also clear that there are smaller scale beats superposed upon the large scale 
beats. These smaller scale beats are of the spatial frequency expected for 
the backward traveling second harmonic field (see the beats in the backward 
traveling component of the particular solution shown in Fig. 8.13(a)). These 
beats are to some degree due to the oscillating amplitude of the backward 
traveling wave, but are to a more significant degree due simply to the interaction 
of the forward and backward traveling components of the total field. The 
forward traveling component of the field is composed of one Bloch wave that 
arises from the particular solution (the so-called forced wave) that oscillates 
in amplitude and one that arises from the homogeneous solution (the so-called 
free wave) that does not. The backward traveling component of the field is 
similarly composed of a forced wave that oscillates in amplitude and a free wave 
that does not. Because the field is compound, there are spatial oscillations in 
the net field due simply to constructive and destructive interference between 
the forward and backward traveling wave components. These are simply the 
classical standing wave beats. The spatial period of these oscillations is given 
by 7T/<72 (or the low frequency alias thereof). This spatial period is very nearly 
identical to that of the oscillations in the backward traveling forced wave, which 
is given by 7r/(<7i +<72/2). For this reason it is very difficult to determine to what 
degree the small scale beats are due to the oscillations in the backward traveling 
forced wave.   Nonetheless, the measurement clearly shows the oscillations in 
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Figure 8.13: The second harmonic field for a 650 Hz, 135.7 dB fundamental Bloch wave. 

In (a) is shown the forward traveling, backward traveling, and local field components from 

the particular solution and the forward and backward traveling field components from the 

homogeneous solution. In (b) is shown both theoretical and experimental values of the 

resultant total field amplitude. 
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the amplitude of the forward traveling forced wave, and shows fairly good 

agreement with the theory. 

In Fig. 8.14(a) is shown the amplitudes of the various components 
of the second harmonic field for a 880 Hz, 134.9 dB (e = .0011) fundamental 
Bloch wave. In Fig. 8.14(b) is shown the resultant total second harmonic 
field amplitude along with measurements. The forward traveling forced wave 
exhibits oscillations that peak near the waveguide termination. The amplitude 
of the forward traveling forced wave is near maximum at the terminiation 

and the backward traveling free wave is consequently of large amplitude. The 
resultant small scale oscillations are of large amplitude but are again primarily 
due to the compound field effect and not the backward traveling forced wave 
oscillations. The point of interest here is the magnitude of the generated second 
harmonic. The rate of increase in the forward traveling second harmonic forced 
wave amplitude with distance is much larger than that of a conventional wave. 
In other words, 880 Hz is a frequency for which the Bloch wave has a large 
effective nonlinearity (see Fig. 8.5). The effective value of beta for this wave 
is \ßB\ = 4.87. In Fig. 8.15 is shown the data from Fig. 8.14(b) in the vicinity 
of the source along with the theoretical trajectory for the forward traveling 
forced wave. Included in the plot is the theoretical trajectory for the forward 
traveling forced wave for that case in which the effective nonlinearity is that 
of a conventional wave (i.e., ßB = ß = 1-20). If we ignore the presence of the 
small scale oscillations due to the counter propagating waves, it is clear that 
the forward traveling forced wave indeed increases in amplitude at a rate that 
corresponds to a value of ß that is closer to 4.87 than to 1.20, as the theory 

predicts. 

In Fig. 8.16(a) is shown the amplitudes of the various components 
of the second harmonic field for a 940 Hz, 134.3 dB (e = .0010) fundamental 
Bloch wave. In Fig. 8.16(b) is shown the resultant total second harmonic 
field amplitude along with measurements. The large scale oscillations of the 
forward traveling forced wave are again clearly evident, and the rapid rate of 
increase of the second harmonic near the source is again a verification of a 
large effective nonlinearity (here, \ßB\ = 4.31. The point of interest in this 
measurement, however, is to verify the presence of the local field. As may be 
seen in Fig. 8.12, the local field component is expected to be fairly significant 
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Figure 8.14: The second harmonic field for a 880 Hz, 134.9 dB fundamental Bloch wave. 

In (a) is shown the forward traveling, backward traveling, and local field components from 

the particular solution and the forward and backward traveling field components from the 

homogeneous solution. In (b) is shown both theoretical and experimental values of the 

resultant total field amplitude. 
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Figure 8.15: The second harmonic field near the source for a 880 Hz, 134.9 dB fundamental 

Bloch wave. 
AS-94-785 

in the range of frequency near 940 Hz. In Fig. 8.16(a) it may be seen that the 
local field component is larger than all but the forward traveling forced wave 
component. While the theoretical and experimental trajectories do differ in 
some respects, the presence of a strong local field component is clearly evident 
in the large offset of the amplitude trajectory. 
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Figure 8.16: The second harmonic field for a 940 Hz, 134.3 dB fundamental Bloch wave. 

In (a) is shown the forward traveling, backward traveling, and local field components from 

the particular solution and the forward and backward traveling field components from the 

homogeneous solution. In (b) is shown both theoretical and experimental values of the 

resultant total field amplitude. 
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Chapter 9 

Summary and Proposals for Future 
Work 

9.1     Summary 
This dissertation is composed of four parts. In the first part the 

problem of linear, time-harmonic wave propagation in a large class of periodic 
waveguides is addressed. It is shown that the Floquet theorem may be applied 
to the system in order to determine that the solutions may be expressed in 
terms of Bloch wave functions. The approach avoids the use of approximate 
model equations that have been used in the past and accounts for mechanisms 
of dissipation. Expressions for the parameters that characterize the Bloch 
waves (the dispersion function q(u) and the relative component wave amplitude 
g/f(u)) are derived and their band structures investigated. It is found that 
reciprocity places significant constraints on the allowed Bloch wave solutions. 
These findings are verified experimentally for both isotropic and anisotropic 
periodic waveguides. 

In the second part, the problem of Bloch wave pulse propagation is 
addressed. The dispersion integral that governs the propagation of Bloch wave 
pulses is derived and a straightforward method of solution is found. Several 
novel pulse propagation solutions that exhibit very unusual behavior are iden- 
tified and verified experimentally. For example, it is found that in some cases 
the carrier frequency of the pulse shifts as it propagates, the pulse accelerates, 
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or the pulse propagates at near-infinite group velocity. The Bloch wave pulse 
problem is also considered for the case of asymptotically large propagation 
distances. Dependent upon how the pulse spectrum is situated with respect 
to the band structure of the dispersion function, several solutions are found. 
According to the various solutions, the pulse envelope may or may not remain 
localized, may distort into its own Fourier transform, or may be trailed by a 
long oscillating tail. Unfortunately, an experiment to verify these results is not 

practical. 

In the third part, the problem of energy transport by acoustic Bloch 
waves is addressed. It is found that there are two different but physically 
relevant energy transport velocities associated with periodic waveguides. One 
of the energy transport velocities is verified experimentally and the other, which 
is simply the group velocity, is verified experimentally in Chapter 5. 

In the fourth part, the effect of nonlinearity in the propagation of 
Bloch waves is considered. The approach to the solution of the problem is to 
first develop and then use a discrete Green's function method. This method 
does not require the approximate representations of the fundamental and sec- 
ond harmonic fields that have been used in earlier work. It is found that a for- 
ward traveling fundamental Bloch wave generates both forward and backward 
traveling second harmonic Bloch waves, each of which oscillates in amplitude 
as it propagates. As in the case of conventional nonlinear waves, dispersion 
disrupts the resonant generation of a second harmonic field and the second 
harmonic field level consequently remains small. In other words, the funda- 
mental Bloch wave propagates with very little net distortion. This and other 
effects predicted by the theory are verified experimentally. The imposition of 
some sort of periodic structure into an otherwise uniform waveguide is therefore 
a means of suppressing the waveform distortion caused by nonlinearity. 

9.2     The Contributions of the Work 
In this work a number of contributions are made to the base of knowl- 

edge of acoustic Bloch waves in periodic waveguides. In addition, several contri- 
butions are made to the field of dispersive wave propagation in general. These 
contributions, which are both theoretical and experimental, are outlined here. 
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The contributions in the area of linear, time-harmonic Bloch waves 
are as follows. As is pointed out in Sec. 1.1, it had previously been shown that 
the solutions to periodic waveguide problems are Bloch waves only when (1) 
the system may be modeled by a (necessarily restrictive) ordinary differential 
equation, and (2) the system is nondissipative. It is found here that the so- 
lutions are Bloch wave functions for a very broad class of periodic waveguides 
that generally cannot be modeled with an ordinary differential equation, and 
are dissipative as well. To the author's knowledge, it had not before been 
shown that the Bloch wave formalism is valid in the presence of dissipation 
for any type of Bloch wave. While the features of the band structure of the 
Bloch wave dispersion are well known, these features had not been derived for 
a general system as they are here. The occurence of a stopband at the reso- 
nance frequencies of the scatterer is, to the author's knowledge, a previously 
unknown phenomenon. While detailed measurements of Bloch wave dispersion 
have been made in microwave systems, they have not been made before in 
acoustic systems. The measurements of g/f are certainly the first made for an 
acoustic Bloch wave system and are believed to be the first made for a Bloch 
wave system of any kind. The restrictions that reciprocity imposes on the al- 
lowed solutions of anisotropic periodic waveguide problems was not previously 
known. 

The contributions of the work on Bloch wave pulse propagation are 
mainly in the area of narrowband pulse propagation in general. As far as the 
author is aware, the concept of the characteristic pulse distortion distance was 
not before known. It was not previously recognized that the key to the deter- 
mination of the validity of solutions to the dispersion integral is a distance. As 
a result, the validity of the concept of group velocity was not recognized be- 
fore as simply being distance dependent. As the large, absorption band group 
velocities were thought to not be valid, they had not been measured before. 
Similarly, the new pulse distortion solutions (the shifting carrier solution and 
the accelerating pulse solution) were neither known of nor verified in measure- 
ment. As far as the general theory of Bloch waves is concerned, the Bloch 
dispersion integral and the recovery operator solutions are also new. 

While no previous work had been done on energy transport by acous- 
tic Bloch waves, such work has been done in the context of microwaves. In that 
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discipline, however, the microscopic energy transport velocity had not been rec- 
ognized. The measurement of the microscopic energy transport velocity here 
is therefore the first. While in the field of electromagnetic wave propagation in 
dispersive dielectrics it had been recognized that two different energy transport 
velocities exist, it was not before known that the same is true of Bloch wave 

systems. 

While a substantial amount of work has been done in the area of non- 
linear Bloch waves, the previous work was all done using a weak Bloch wave 
dispersion approximation. The present work represents an entirely different 
approach to the problem that is valid for arbitrarily strong Bloch wave dis- 
persion. The measurement of the nonlinear effects is the first in an acoustic 

system. 

Two interesting integral relations that did not previously exist were 
derived for this work. One is the exact dissipative reciprocity relation derived 
in Appendix A. Dissipative reciprocity relations derived in the past have made 
use of the lossy Helmholtz equation, which is valid only for irrotational flow 
and therefore valid only far from boundaries. The reciprocity relation derived 
here is exact and therefore valid even in the thermoviscous acoustic boundary 
layer. The other integral relation is the time-averaged energy integral derived 
in Chapter 7. The integral gives the time-averaged acoustic energy contained 
in a volume given the field at the boundary. 

9.3    Proposals for Future Work 
One interesting phenomenon that deserves more attention is the in- 

finite stopband group velocity. It appears that it is allowable (in the causal 
sense) that the group velocity exceed the phase velocity as long as the atten- 
uation is large enough. It seems that there must be a local causal constraint 
that relates the group velocity and the attenuation at any particular frequency. 
It may be that for a given group velocity, there is some minimum prescribed 
amount of attenuation. 

While linear time-harmonic, nonlinear time-harmonic, and linear pulsed 
Bloch waves have been considered, nonlinear pulsed Bloch waves have not. As 
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it was found in the time harmonic case that a forward traveling fundamental 
Bloch wave generates both forward and backward traveling second harmonic 
Bloch waves, it seems that a forward traveling Bloch wave pulse must emit 
a steady stream of backward traveling second harmonic energy from its tail. 
Similarly, if the fundamental and second harmonic group velocities differ, the 
forward traveling second harmonic field that is generated in the body of the 
pulse could "leak out" of the region occupied by the fundamental pulse. While 
the importance of phase synchrony is clear in the nonlinear time harmonic prob- 
lem, it appears that for the pulse problem group synchrony may be important 
as well. 

While the problem of the nonlinear self interaction for a progressive 
Bloch wave field has been considered here, there are many other interesting 
nonlinear interaction scenarios that may yield interesting results. The nonlin- 
ear interaction of copropagating Bloch waves of different frequency, for exam- 
ple, is the simplest generalization of the present work that appears interesting. 
Further development could address the nonlinear interaction of counterpropa- 
gating Bloch waves. Once these issues are addressed, the nonlinear behavior 
of Bloch waves is well characterized. At that point, nonlinear dispersive model 
equations could be developed that model this behavior. These equations would 
undoubtedly be quite unusual as they must model the bidirectional generation 
of a second harmonic field by a progressive fundamental field. These equations 
could then be investigated for interesting solutions such as stationary (i.e., 
soliton) solutions. 
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Appendix A 

A Dissipative Reciprocity Theorem 

A principle of reciprocity for a viscous, heat conducting fluid may be 
derived from the linearized set of governing equations (Eqs. 2.1-2.5) by way of 
the divergence theorem. With the inclusion of a mass source term, the equation 
of mass continuity becomes (e.g., Morse and Ingard, 1986) 

^+PoV-u = m, (A.l) 

where rh(r,t) (in kg/s/m3) is the mass injection rate density. We next use 
the entropy equation (Eq. 2.3) and the first of the thermodynamic expansions 
(Eq. 2.4) to replace the mass density term in Eq. A.l, which may then be 
written 

^ + Po^V-u=^V2T + rh4 (A.2) 

Under the time harmonic assumption, the momentum equation (Eq. 2.2) and 
Eq. A.2 become 

Vp = jup0u + //V2u + (/iB + /z/3)VV ■ u (A.3) 

V • u = i^p + SlL V2T + -m, (A.4) 
POCQ       poCp po 

respectively. 
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A Lorentz-type reciprocity integral results from the following state- 
ment of the divergence theorem 

f (Piu2 - p2ui)-dS = / [piV • u2 + u2-Vpi - p2V • Ui - uyVp^dV.    (A.5) 

where pi and Ui represent the acoustic pressure and velocity fields due to 
the source distribution rhi and pz and u2 represent those due to the source 
distribution m2. The substitution of Eqs. A.3 and A.4 into the volume integral 

causes several terms to drop out and we are left with 

jf (Piua - amO-dS = -o j^rn, - Plrh2}dV + -^- ^[piV2T2 - pfPT^dV 

+(ßB + /z/3) J [u2-V(V • uj) - urV(V ■ u2)]dV 

+ p [ [u2-V2
Ul - ui-V2u2]dV. (A.6) 

The combination of the entropy equation (Eq. 2.3) with the second of the ther- 
modynamic expansions (Eq. 2.5) results in the pressure-temperature relation 

PoCp K 2 
P      T0ß    ^jiüßToV (A.7) 

We next use Eq. A.7 to eliminate the pressure in the second volume integral of 
Eq.A.6, which becomes 

ßK 
PoCp 

I [Pi V2T2 - p2V
2T1]dy = ^r f [T^2T2 - T2V

2T,)dV. (A.8) 

We next use the following relations to convert the integrands in the second 
through the fourth volume integrals of Eq. A.6 into divergences: 

V • [TjVTa - T2VTX] = TXV
2T2 - T2V

2TX 

d_ 

dxi 

d 

U2j 
du\j 
dxi 

Uij 
du 2j 

duu 
U2i~^ Uli 

dxj [     dxi 

dxt 

du2j 

dxi 

= u2 • V2ui — ui • V2u2 

= u2 • V(V • U!) - Ui • V(V • u2). 
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The substitution of the above relations into Eq. A.6 (also making use of Eq. A.8) 
and the conversion of the resultant volume integrals over divergences into sur- 
face integrals results in 

f (piu2 - P2Ui)-dS / \p2rhi - pim2]dV = 
Js po J v 

i lv™ ~ T™'dS+"/>^ ~ «^ns 
+(ßB+ßß) fslu2i^-Uu^]dSy (A.9) 

Equation A.9 is a Lorentz-type reciprocity relation that is exact in the dis- 
sipation parameters. Note that in the absence of dissipative mechanisms the 
right-hand side of Eq. A.9 is zero and we have 

/ (Piu2 - P2^i)-dS = — j [p2mi - Pim2}dV, 
Js po Jv 

the standard Lorentz-type reciprocity relation for acoustic fields. Note also that 
the dissipative terms all appear in the surface integrals, and that the surface 
integrals vanish on rigid, isothermal surfaces such as the waveguide wall. 

In order to investigate the implications of reciprocity on the behavior 
of the scatterers, we apply the reciprocity principle to a system that consists of 
a single scatterer in an otherwise uniform waveguide. More specifically, we con- 
sider a volume that includes the scatterer and lengths of uniform waveguide on 
either side of the scatterer. The surface S that encloses this volume is composed 
of four parts: the waveguide wall surface Sww, the surface of any inclusions 
Si, and the end cap surfaces Si and S2, which are normal to the z-axis. The 
source distributions rhi and m2 are assumed to be confined to regions of the 
waveguide far enough from the volume under consideration that any evanescent 
modal fields generated at the sources are negligible at Si and S2. The surfaces 
Si and S2 are also assumed to be far enough from the scatterer that evanescent 
modal fields generated at the scatterer are likewise negligible. The reciprocity 
integral (Eq.A.9) simplifies greatly in the case of this system because (1), the 
volume is source-free, and (2), owing to the boundary conditions (Eq. 2.6), the 
integrands of the surface integrals are zero on Sww and Si. The only nonzero 
contributions come from the end cap surface integrals. 
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In order to evaluate the end cap integrals, we develop a convenient no- 
tation for the dissipative zeroth order mode (i.e., quasi-planar mode) wave func- 
tions associated with the uniform waveguide. We define P(±)(rj_), U(±)(rj.), 
and T(±)(rj_) to be the transverse mode functions for the pressure, velocity, 
and temperature fields associated with a forward (+) or backward (-) traveling 
wave. The transverse coordinate r_L is defined such that r = r± + zez, and the 
functions are normalized such that max|F(±)| = max|U(±)| = max|T(±)| = 1. 
In this notation, the field variables associated with a forward traveling wave 

are 
p(r) = AP{+)(r1_)e>kz 

u(r) - 4-Ui+\r±)ejkz (A. 10) 

T(r) = Ar(+)(rj.)e^, (A.ll) 
Zirp 

where 

Zu. ^m.       (fixed ,) (A.12) 
max|u(rj| 

is a sort of dissipative mode impedance and 

„        max|ü(r)|        .„     ,    . ,.  ,„. 
ZT = ^Hl       ^ed * A-13) max|r(r)| 

is a "thermal impedance". With the use of simple symmetry arguments, it is 
found that the transverse mode functions associated with the backward trav- 
eling field may be related to those associated with the forward traveling field 

by 
p(-) = P(+)        T{-) = T(+) u(-) = uf) _ i/(+)gzi 

where Uj_ , the transverse component of the velocity field, is defined by U^ = 
Uf> + U^ez. 

The acoustic pressure field at the end caps that arise from each of 
the source distributions may be expressed completely generally as follows. The 
waves incident upon the scatterer from the left and right due to the source 
distribution rhi are of amplitudes C+ and C~, respectively1.   Likewise, the 

1 All wave amplitudes are referenced to their values at the scatterer. 
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waves incident upon the scatterer from the left and right due to the source 
distribution m2 are of amplitudes D+ and D~, respectively. The field at the 
each end cap surface is composed of these incident waves and the resultant 
scattered waves. The field in the waveguide in the vicinity of the end cap 
surface 5i (that to the left of the scatterer) may be written 

Pl(r) - C+pW(r±y
kz + (SnC+ + Sl2C-)P^\r±)e^ 

p2(r) = Z?+pW(rx)e*to + (SnD+ + SnD-)P^-\r±)e-^, 

and that in the vicinity of the end cap surface S2 (that to the right of the 
scatterer) may be written 

Pi (r) = C-P(-)(rx)e-jfcz + (S21C
+ + S22C-)PM(r±)ejkz 

p2(r) = D-p(-\r±)e-jkz + (S21D
+ + S22D-)P^(r±)ejkz. 

The associated velocity and temperature fields may be found from the pres- 
sure fields by way of Eqs. A.10-A.13. The substitution of these fields into the 
reciprocity relation (Eq. A.9) results in 

[Sn - S12}(C+D- - C~D+) ||-|/*+>tf(+>dS+ A|* |T<+>2dS 

+^f\V?)-V?-U™>]dS 

+ (MB + /i/3)|^ /[^ui+) • v±ui+) - f/i+)2]^} = 0. 
(A. 14) 

The implications of this result are most readily found by consideration 
first of the nondissipative case. In the absence of dissipation we have K = /i, = 
\iB -► 0, P(+) = U[+) -f 1 (plug flow), Zu -» Z0 = poCo, and Eq. A.14 becomes 

[S21 ~ Sl2}(C+D- - C-D+)(2/Z0a) = 0. 

Because C~, C+, D~, and D+ are incident wave amplitudes and are therefore 
independently adjustable, it is generally the case that C+D~ — C~D+ ^ 0. It 
therefore must be the case that 512 = S2i-  This is the constraint reciprocity 
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places on the scattering matrix elements. In the dissipative case, the term in 
Eq. A. 14 enclosed in curly braces {•}, like the term (C+D~ - C~D+), is not 
generally equal to zero. Because the fluid dissipation parameters K, ß, and \iB 

may take on any positive, real value, the integrals do not generally balance to 
exactly zero, and again we must have Sw = £21 • A simple approximation is 
illustrative. As the dissipation becomes small, we have P(+), U{

z
+), T(+) ~ 1, 

U^ zi 0 (nearly plug flow), Zu ~ p0Q), and ZT ~ p0Cp/T0ß. Equation A. 14 
becomes 

[S21 - S12](C+D- - C-D+)-^- (l + 
jk 

POCQ 

ß2T0c*K 

ci 
-HB- W3 = 0. 

The real and imaginary terms in the curly braces cannot combine to zero, and 

again we must have S12 = £21 • 



Appendix B 

The Scattering and Transmission 
Matrices 

The S-matrix and T-matrix approaches are equivalent methods of 
relating the amplitudes of the traveling waves that occur in the vicinity of 
a scatterer. The S-matrix or scattering matrix relates the amplitudes of the 
outgoing or scattered waves to those of the incoming or incident waves. The 
T-matrix or transmission matrix relates the amplitudes of the forward and 
backward traveling waves on one side of a scatterer to those on the other 
side. In order to define these matrices, we first define the amplitudes of the 
forward and backward traveling waves on one side of a scatterer to be a^ and 
af-~\ respectively, and those on the other side to be b^ and tf~\ as shown 
schematically in Fig. B.l. 

The elements of the S matrix are simply reflection and transmission 
coefficients. The reflection coefficients for waves incident from the left and right 
are labeled Sn and S22, respectively, and the transmission coefficients for waves 
incident from the left and right are 5*21 and S\2, respectively. These waves are 
shown schematically in Fig. 2.1. The amplitudes of the outgoing waves (a^ 
and £/+)) may be expressed in terms of the amplitudes of the incoming waves 
(a(+) and b^) as follows: 

a("} = Sna{+) + 5126
(_) 

fe(+) = W+) + S226
(->. 
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This is the S-matrix form of the relationship among the incident and scattered 
waves. The T-matrix is found by solving for the amplitudes of the waves on 
the right of the scatterer in terms of those on the left of the scatterer. The 
result is a similar pair of equations. In matrix form, these equations may be 

expressed 

(B.l) 

where 

r a<-> ' 
b(+) = s [ a<+> " ■ b(+) ■ 

= T 

s = Su     S12 

S21   S22 S\2 

-\S\   S22 

Sn     1 
(B.2) 

a(+Vfc* 6(+V kz 

<H\AA/- 
-WVH> 
<P\AAr 

aHe-jk* bHe-jkz 

Figure B.l: The traveling waves near a scatterer. 

The cell T-matrix Tc is defined to be the T-matrix that relates the 
field at a point a distance h/2 to one side of the scatterer and that at a point 
a distance h/2 to the other side. In other words, the cell T-matrix relates the 
fields at the centers of neighboring cells. With the definition of the propagation 
T-matrix or propagator Tp(z), which is that associated with propagation over 

a distance z, 

Tp(z) = 
ejkz      0 

0 -jkz (B.3) 

the cell T-matrix may be expressed Tc = Tp(h/2)TTp(h/2), or 

Tnejkh       Tl2 

T21      T22e-^ 

As the S and T-matrices are equivalent characterizations of a scatterer, the 
elements of the T-matrix may be expressed in terms of those of the S-matrix 
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and vice-versa. Prom Eqs. B.l we find 

rpC    

>12 

-|S|e*fcÄ S22 
-jkh s = 

-jkh 

J22 

rpC 
"J21 
\TC\   Tg 

(B.4) 

where \T°\ denotes the determinant of the cell T-matrix. Note that the re- 
lationship between the T-matrix and the S-matrix is simply that shown in 

Eq. B.4 in the limit as h —► 0. 

We may now investigate the restrictions that are placed on the values 
of the elements of these matrices by such conditions as reciprocity, energy 
conservation, and symmetry in the scatterer. In Appendix A it is shown that 
the principle of reciprocity, regardless of whether or not energy is conserved, 
requires that Si2 = S2i- With the use of expressions for 5i2 and S2\ from 
Eq. B.4, we find that the principle of reciprocity requires 

\TC\ = 1. >12 S21 or (B.5) 

If the system is nondissipative, then the power incident upon a scat- 
terer must equal the power scattered from the scatterer. If there is no wave 
incident from the -z side (i.e., if f>(-) = 0), then the statement of power con- 
servation is |a(+)|2 = |a(_)|2 + |6(+)|2 or, from Eq. B.l, 

|5„|a + |521|
2 = l. (B.6) 

If instead there is no wave incident from the +z side, then 

|S12|
2+|S22|

2 = 1. (B.7) 

If both incident waves are present, then we find, using Eqs. B.6 and B.7, 

S11S12 + S21S22 = 0. (B.8) 

In terms of the cell T-matrix, the above power conservation relations may be 
written 

->C|2 ITCI2 

1J 22! T2
C! + IT^ITJV = 0.       (B.9) i + i7$iia = i7&r   i + m2l 

With the use of the reciprocity requirement \TC \ = 1, Eqs. B.9 may be combined 
and the energy conservation requirement becomes 

TlC        /T"iC* /T"»C        /T"»C* 
21 — J 12 1 11 — J

22 • (B.10) 
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If the scatterer is symmetric under axial reversal (as they are in an 
isotropic periodic waveguide), then the reflection and transmission properties 
of the scatter must be the same for waves incident from either side. It therefore 

must be the case that 
iS"i2 = 52i Sn = 522, (B-ll) 

or, equivalently, 
rpC   _        rpC 
J21 — — J12- 



Appendix C 

The Solutions of the Microstructure 
Equation 

In this appendix we consider the constraints on the solutions to the 
microstructure equation (Eq. 3.11) that are imposed by the principles of reci- 
procity and conservation of energy. In Appendix B it is shown that the principle 
of conservation of energy imposes three conditions on the T-matrix elements 
(see Eq. B.9) and the principle of reciprocity imposes one (see Eq. B.5). These 
constraints may be combined to yield the alternative set of constraints 

Tg = Tg* T° = T& 1 + |Tg|2 = |T22|
2. (C.l) 

Prom these relations it follows that Re{T£}2 - 1 = \Tg\2 - Im{T£}2. Because 
I^C^n}! > 1 is the condition for a stopband (see the discussion following 
Eq. 3.7), it follows that the condition 

\Tg\2 - lm{T°}2 > 0 (C.2) 

is also a stopband condition. 

We now consider the magnitudes of OQZ/OQI and g/f^. In the ab- 
sence of dissipation, the microstructure equation (Eq. 3.11) becomes 

T^(ao2/aoi)2 + 2jlm{TZ}(<TO2/<J0i) - lf2* = 0, 

259 



260 

and the solutions may be written 

002/001 
(±) _ 

C\2 jlm{TZ}T   \Tg\2-lm{TC} 
1/2 

TÜ 
(C.3) 

12 

In the stopbands, the argument of the square root is, by the stopband condition 

(Eq. C.2), positive and real, and we have 

1002/001 
(±)| - (C.4) 

In the passbands, the argument of the square root is negative and real, and we 

have r , /on \rpC\2     \ !/2 
lJi: ,      /(±)|_MZnli 

1002/001   I — ij^Cl IT    1 
121 (C.5) imMp; 

From Eq. C.2 it must be the case that in the passbands 

0<(1-|T^|2/Im{^}2)1/2<1. 

From this passband condition and Eq. C.5 it follows that, in the passbands, 

|0o2/0o7}| > 1      and      IW^oi0! < 1- (C-6) 

These findings may be cast in terms of the parameter g/f, and we have (from 

Eq. C.4) the stopband condition 

|0//(±)I = 1, 

and (from Eq. C.6) the passband condition 

|0//(±)I<1- 

The relationship between (7O2/0ot) and 002/001^ is found by consider- 
ation of Eq. C.3. In the passbands, we have 

1/2 

002/001 
(±)      -Jlm{7fj} T j [Im{7?j}2 - \Tg\ 

Tg 
(C.7) 
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where the argument of the square root is real and positive. Using the relations 
(7o2/o-o7) = [-(Tf2/T£{)ao2/crbV}~1 (from the discussion following Eq. 3.11) and 
T2°i = T?2  (fr°m Eq- C-1)» we find 

W4i° = — no- (C8) 
jlm{TC}+j[lm{TC}*-\TC\*)l/2 

Equations C.7 and C.8 may be used to verify the relation 

[w4"W#*] = i, 
which in turn implies 

g/f{-} = g/f{+>- 

If the scatterers are symmetric (under axial reversal) as well as nondis- 
sipative, then we must have 521 = £12 and S\\ = S22 or, equivalently, T2

Cj = 
—Tß. As reciprocity and energy conservation require T^ = T^*, it must be 
that for a nondissipative scatterer, T^2 and T2

C
X are imaginary. Prom Eq. C.3, 

therefore, it must be that 002/001, and therefore g/f as well, are real in the 
passbands. 
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Appendix D 

The Side Branch Scattering 
Parameters 

Here we derive the cell T-matrix elements associated with the isotropic 
and anisotropic periodic waveguides described in the introduction. The ap- 
proach is to derive the S-matrix elements associated with a single side branch 
and then use Eqs. B.3 and B.4 to determine the associated cell T-matrices. 

The S-matrix elements associated with a single side branch are de- 
rived by imposition of the requirement that the acoustic pressure and velocity 
fields must be continuous at the side branch opening. For the case of a wave 
of amplitude A incident on the side branch from the left, the acoustic pressure 
field in the waveguide may be expressed 

_ j Ae'* + SnAe-'*   £<0 
P~ \ S^Ae?* £ > 0      ' 

where f is a shifted axial coordinate centered on the side branch. The field in 
the side branch may be written 

p = SshA(e-jk'by + ^b{y+2d))> 

where 5sb is the coefficient of scattering into the side branch. The requirement 
that the acoustic pressure field be continuous yields 

l + Sn=S2l = Ssh(l + e2M), 
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and the requirement that the velocity field be continuous yields 

Awg(l - Su) - AwgS2l - AshSwg(l - e2jk'»d) = 0. 

The solution of these equations for the scattering parameters yields 

 1  

*b " [1 + K^sbMwg)] + [1 - i(A9bA4wg)]eW 

s -1 
11
     1 + 2j(Awg/Ash) cot(ksbd) 

S 1 
21     1 - \j{Ash/A^g) tan(fcsbrf) 

Because the scatterer is symmetric, from Eq. B.ll we also have S22 = Sn and 
S12 = S21. We may now use Eq. B.4 to find the T-matrix elements: 

T(d) = 
1 + ±j(Ash/Awg) tan(fcsbd)       ±j(Ash/Awg) tan(kshd) 
-\3{Ash/Ay,g) tan(fcsbd)     1 - ±j(Ash/Awg) ta,n(kshd) 

(D.l) 

The cell T-matrix for the isotropic periodic waveguide is simply given by 

Tc = Tp(/i/2)T(d)Tp(/i/2) 

[1 + ^(A^/A^) tm(kshd)]ejkh iK'WAvg) ttm(kshd) 
-\j{Ash/Avg) taji(kshd) [1 - iJ(Ash/Awg) tim(kshd)}e^kh 

(D.2) 
where Tp(z) is the propagator defined in Appendix B. The cell T-matrix for 
the anisotropic periodic waveguide is given by 

Tc = Tp(/i/3)T(d1)Tp(/i/3)T(d2)Tp(Ä/3)> (D.3) 

the explicit form of which is very lengthy and not worth showing. 

The S and T-matrix elements may be adjusted to improve their ac- 
curacy by use of the end-corrected side branch length d — d + Ad in place of 
the physical length d. The additional length Ad corrects for the inertial load 
on the side branch field due to the mass of the fluid at its opening. The usual 
end correction is for a circular opening of radius a and is given by Ad = 8a/37r 
(e.g., Morse, 1976). Using the side branch width I in place of the diameter of 
the circular opening we get d — d + 4//37T, which is the corrected side branch 
depth used here. 



Appendix E 

Measurement and Data Analysis 
Techniques 

In this appendix the details of the experiment are presented. The 
design and construction of the periodic waveguide and the various microphone 
configurations are described. The setup of the instrumentation is presented and 
the data acquisition algorithms are outlined. In the cases of the dispersion, g/f, 
and pulse measurements, for which the post-measurement analysis of the data 
is substantial, the subsequent processing of the data is described. 

The periodic waveguide systems in which the measurements are made 
are described in Sec. 1.3.1. On one end of the section of periodic waveguide 
is mounted a compression driver and on the other is a termination of acoustic 
impedance poCo/^wg- Because the throat of the driver is a nearly uniform 
waveguide, we have a system in which conventional waves are incident upon 
(and partially reflected from) the periodic waveguide, in which a Bloch wave 
is excited. The resultant Bloch wave is in turn incident upon, and partially 
reflected from, the terminating waveguide, in which the resultant conventional 
wave field is progressive. The Bloch wave field, however, is compound. 

It should be noted that the extraction of information from the data set 
would be much simpler if the measurements were performed in a progressive 
Bloch wave field. As a practical matter, however, we are limited to making 
measurements in a compound Bloch wave field. The realization of a progressive 
Bloch wave field requires the termination of the periodic waveguide into the 
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Bloch acoustic impedance, which is a wildly varying function of frequency that 
would be prohibitively difficult to synthesize for anything but a very narrow 

band of frequencies (see Sec. 4.1). 

E.l    The Experimental System 
The design of the isotropic periodic waveguide system is as follows. 

The termination waveguide is 1.2 m long and is loaded with a 1.0 m long, gently 
tapered anechoic fiberglass wedge. The periodic waveguide has the following 
dimensions: The design of the isotropic periodic waveguide system is as follows. 
The termination waveguide is 1.2 m long and is loaded with a 1.0 m long, gently 
tapered anechoic fiberglass wedge. The periodic waveguide has the following 

dimensions: 

waveguide period 
side branch depth 
side branch width 
waveguide height 
waveguide width 

h = .1 m 
d = 38.1 mm (1-1/2  in.) 
/ = 9.5 mm (3/8 in.) 
b = 25.4 mm (1 in.) 
a = 38.1 mm (1-1/2 in.) 

The dimensions were chosen such that a scatterer resonance stopband occurs 
roughly midway between the ix and the 2n Bragg stopbands without overlap. 
Such a stopband structure allows the two species of stopbands to be experi- 
mentally investigated independently of one another. For the chosen dimensions, 
the 7T and 2-n stopbands are expected to occur at roughly 1.7 and 3.4 kHz, re- 
spectively, with the intervening scatterer resonance stopband at roughly 2.2 

kHz. 

The anisotropic waveguide system is simply the isotropic waveguide 
system with selected side branches filled or half filled. Every third side branch 
is fit with an aluminum insert that completely fills it, and those to one side 
of the filled side branches are fit with half filling inserts. The period of the 
resultant waveguide is tripled (/i = .lm-»/i= .3m), and the scatterers become 
composed of an uneven pair of side branches of depths 38.1 mm (1-1/2 in.) and 
19.1 mm (3/4 in.) set 0.1 m apart. For the cited dimensions, we expect the 
7T, 2-71-, and 3TT Bragg stopbands to occur at roughly 570, 1140, and 1700 Hz, 

respectively. 
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E.l.l    Periodic Waveguide Construction 

The periodic waveguide is essentially a rectangular duct with one wall 
removed and replaced by a piece of near-square stock with slots cut periodically 
across the width. The duct is a section of 38.10 mm x 69.85 mm (1-1/2 in. 
x 2-3/4 in., i.d.) rectangular extruded aluminum tubing with one of the walls 
milled off, forming a rectangular channel. Slots 38.10 mm (1-1/2 in.) deep 
and 9.52 mm (3/8 in.) wide were milled across the narrow width of 38.10 
mm x 50.80 mm (1-1/2 in. x 2 in.) aluminum stock at 0.1 m intervals. The 
rectangular channel is fit over the slotted stock in such a manner that there 
remains an open 25.40 mm x 38.10 mm (1 in. x 1-1/2 in.) rectangular tube 
over the slotted stock. To ensure a good seal between the duct and the slotted 
sections, a piece of 31.75 mm (1-1/4 in.) square aluminum tubing is placed on 
either side of the duct (below the area that forms the waveguide) and through- 
bolted to act as a clamp and force the duct walls into the sides of the slotted 
stock. In order to further seal the joint between the duct and the slotted stock, 
vacuum grease was applied to the sides of the slotted stock prior to assembly. 
A rectangular U-shaped piece of aluminum is fit over the driven end of the 
waveguide and screwed into the slotted stock to act as a mounting flange for 
the driver. The assembled waveguide is shown in Fig. E.l. 

measurement 
port 

rectangular channel 

slotted stock 

clamping 
through-bolt 

clamping tube 

Figure E.l: The assembly of the periodic waveguide. 

The measurement ports are 9.53 mm (3/8 in.) diameter holes drilled 

AS-94-787 
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along the center of the side of the duct opposite the slotted stock (the top). 
The holes are located midway between side branches, at the center of each cell. 
When not in use, the ports are fit with cylindrical delrin plugs which form a 
flush surface on the waveguide interior. When in use, the port can accomodate 
either a 1/4 in. microphone or a probe tube clamping jig. The microphones 
are fit with a sleeve that holds the active face (the condenser membrane) flush 
with the waveguide interior (see Fig. E.2(a)). The probe tube clamping jig 
is an aluminum block with a cylindrical protrusion that, like the port plugs, 
forms a flush waveguide interior surface. The block is drilled to accomodate a 
probe tube set at an angle to the waveguide wall normal (see Fig. E.2(b)). 

at mic jig 

/ 
/4" mic 

probe tube —A 

probe jig -f 

u 
(a) (b) 

Figure E.2: The two field measurement configurations. In (a) the microphone is mounted 

flush with the interior surface of the waveguide, and in (b) a probe tube is used to probe the 

field in the volume of the field. 

AS-94-788 

E.1.2     The Experimental Setup and the Acquisition of 
Data 

The experimental setup is diagrammed in Fig. E.3. At the heart of 
the setup is the Mac II microcomputer, which runs National Instruments' Lab- 
VIEW, a data acquisition/analysis/display software package. The computer 
and instrumentation are linked via a National Instruments NB-DMA-8-G in- 
terface board and GPIB bus. The signal source is in some cases a Hewlett- 
Packard 3325A frequency synthesizer and in others a Wavetek 275 arbitrary 
function generator. These sources, under computer control, send a signal to 
a Hafler P500 audio range power amplifier, which in turn drives a JBL 2485J 
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compression driver. The resultant acoustic signal is picked up by a Briiel and 
Kjaer 4136 1/4 in. condenser microphone (with its associated preamplifier and 
bias power supply, the Briiel and Kjaer 2619 and 2804, respectively) and routed 
to either a Sony-Tektronix RTD 710A digitizer or a Hewlett-Packard 35660A 
dynamic signal analyzer. In some instances, two microphones and two channel 
digitization is used, and in some instances the 1/4 in. microphone is replaced 
by a Briiel and Kjaer 4133 1/2 in. microphone in a Briiel and Kjaer UA 0040 
1.9 mm (.075 in., o.d.) probe tube. 

compression 
driver mics anechoic 

termination 

Figure E.3: The experimental setup. 

AS-94-789 

E.2     The Dispersion and g/f Measurements 
The two parameters that characterize a linear, time-harmonic Bloch 

wave function are the Bloch wave number q and the relative component wave 
amplitude g/f. The technique used to extract values of these parameters from 
a set of measurements is the standard method in which the data set is fit to a 
theoretical model in the least-squares sense (numerical recipes). The acoustic 
pressure is measured at several locations in the waveguide and the Bloch wave 
parameters are extracted from the data set using two different least-squares 
approaches. One approach is used for the isotropic periodic waveguide and the 
other for the anisotropic waveguide. For the isotropic periodic waveguide case, 
it turns out that we are able justify the use of a simple progressive Bloch wave 



270 

model in the least-square fit procedure. In the case of the anisotropic periodic 
waveguide, however, we must use the full compound Bloch wave model. The key 
difference in the waveguides that necessitates the different approaches is their 
lengths. While both waveguides have the same physical length, their lengths 
in terms of number of cells differ by a factor of three. We can justify using a 
progressive wave model for the relatively long (48 cycle) isotropic waveguide, 
but not for the relatively short (16 cycle) anisotropic waveguide. 

For the dispersion measurement in the isotropic waveguide, micro- 

phones are placed in the reference port (the port in the cell nearest the driver) 
and in one of the downstream ports. The computer is then prompted to begin 
a data acquisition algorithm that measures the amplitude and phase of the 
wavefield at the downstream port relative to those at the reference port for a 
specified set of frequencies. This process is repeated for 22 downstream ports 
at intervals of 2h (i.e., measurements were made in every other cell). For the 
g/f measurement in the isotropic waveguide, one microphone is placed in the 
reference port and a probe tube microphone is placed in a clamping jig in one 
of the downstream ports such that the field point being sampled is upstream 
of the cell center by 15 mm. After the data acquisition algorithm is run with 
the microphones in that configuration, the probe tube jig is rotated 180° so 
that the field point being sampled is 15 mm downstream of the cell center. 
The algorithm is then rerun with the microphones in the new configuration. 
This process is repeated for eight downstream ports at intervals of 2h. For 
the anisotropic waveguide, the measurement procedure is identical to that for 
the g/f measurement in the isotropic waveguide, though data are collected at 
intervals of h at 10 downstream ports. 

The function of the data acquisition algorithm is to measure and store 
values of the relative amplitude and phase of the signals at the two channels of 
the digitizer for a specified set of frequencies. The algorithm works as follows. 
For any particular frequency, the digitizer sampling rate is set such that there 
are roughly 300 samples/cycle. Upon completion of the acquisition and trans- 
fer of the data, the two data vectors (one associated with each channel) are 
resampled using a linearly interpolating resample algorithm. The resampling is 
such that exactly one cycle of the waveform occupies a 256-bin time series vec- 
tor. When each time series is Fourier transformed, then, the complex number 
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in the fundamental frequency bin is the complex amplitude of the signal. The 
complex ratio of the downstream amplitude to the reference amplitude (i.e., 
the relative amplitude) is then calculated and stored. 

E.2.1    The Isotropie Periodic Waveguide 

Although the Bloch wave field is compound, we may justify the use of 
a progressive wave model in the least squares procedure because the influence of 
the backward traveling wave is small. The presence of the backward traveling 
wave causes spatial oscillations in the measured values of q and g/f that are 
averaged out in the least squares procedure. Consider first the measurement of 
the Bloch wave number q. The acoustic pressure at the center of the nth cell 
in a compound Bloch wave field is 

p(nh) = Ae?nqh + RBAej{2N-n)qh, 

where TV is the number of cycles in the periodic waveguide, and RB is the 
Bloch wave reflection coefficient at the termination (at z = Nh). Whereas the 
phase of a progressive field increases linearly with distance in the direction of 
propagation, the backward traveling wave causes the phase to oscillate peri- 
odically about a linear increase. Likewise, the exponential decay associated 
with the amplitude of a progressive wave takes on periodic oscillations about 
the exponential decay in the presence of a counter propagating wave. The net 
amplitude decay, however, is still exponential and the net phase advance is 
still linear. Therefore, over a large enough number of cycles of the periodic 
perturbation the amplitude and phase will average out to essentially exponen- 
tial decay and linear increase, respectively. A linear regression of the sampled 
Bloch wave phase against distance effectively filters out the oscillations and 
retains only the linearly increasing component. The result of the regression is 
therefore a good measure of Re{<?}. Likewise, a linear regression of the loga- 
rithm of the sampled Bloch wave amplitude against distance should be a good 
measure of lm{q}. These linear regressions are simply least-squares fits of the 
measurements to a progressive wave model. 

In order for our "oscillation averaging" scheme to be valid we have two 
requirements:  (1), the magnitude of the oscillations must be relatively small, 
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and (2), we must have a relatively large number of these small oscillations over 
which to average. For the isotropic periodic waveguide, RB = -g/f (ref), and 

the field may be expressed 

p(nh) = Ae™h [l - \g/f\e-2^-n^hej^N-n)qrh+<l,] (E.l) 

where q = qr +jqi and g/f = \g/f\e>4'. The second term in the square brackets 
in Eq. E.l represents the influence of the backward traveling Bloch wave on 
the otherwise progressive Bloch wave field. The magnitude of the second term 
is |#//|e_2(Ar_n)<7i\ which we want to be somewhat smaller than one. Because 
we always have e-

2(N~n)^h < 1, and \g/f\ is small compared to one away from 
stopbands, our first requirement is met as long as we are not near a stopband 
frequency. In and near the stopbands, \g/f\ ~ 1, but qt is relatively large. If 
2(AT - n)qih >~ 2, then again our first requirement is met. This will hold as 
long as our measurement interval ends some substantial number of waveguide 
cycles (say, ~10) from the termination. This is also a requirement we can meet 
as our waveguide is 48 cycles in length. We can end the measurement interval 
sufficiently far from the termination that the influence of the backward traveling 
Bloch wave is always small, yet still have a measurement interval that is large 
enough that we can average over a relatively large number of oscillations. 

A similar argument is used to justify the use of a progressive field 
model in the measurement of g/f. Where in a progressive Bloch wave field 
the relative amplitude of the component waves is g/f in all cells of the wave- 
guide, there is a periodic deviation from g/f in the compound Bloch wave case. 
Again, the oscillations can be averaged out provided they are of relatively small 
amplitude and we have a sufficiently large number of oscillations over which to 
average. 

In order to obtain sufficient information to determine the complex 
amplitudes of the components of a compound conventional wave field, the field 
must be measured at more than one point in each cell. If the acoustic pressure 
field in the nth cell of the periodic waveguide is p(z) = C^+)ejkZn + C^e-'*2", 
then acoustic pressure measurements at z 
whereA < h - I, are given by 

p(nh - A/2) 1      r P-^/2 

p(nh + A/2) 

nh — A/2 and z = nh + A/2, 

JfcA/2 

ejk A/2 

^-JfcA/2 
C(+) 

(E.2) 
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where zn = z — nh. Inversion of Eq. E.2 yields 

-1 

c<-> 2j sin(fcA) 

e-jfcA/2     _gjfcA/2 

_eJfcA/2     e-jfcA/2 

or 

p(nh - A/2) 

p(nh + A/2) 

_ «J*A w-)/w+) = P(nfe + A/2)/p(n/i - A/2) - g 
n   '   n        l-p(nh + */2)/p(nh-A/2)eikA' 

(E.3) 

(E.4) 

If the Bloch wave field being measured were progressive, then each 
value of C£~)/C^ calculated from a pair of pressure measurements in the nth 

cell would be a good measure of g/f. The field, however, is compound, and 
the theoretical value of the amplitude ratio in the nth cell is 

c£->M+> g/f + RBe2jg(N-n)h _ g/f[l-e2j^N-^h} 
1 + RBg/fe2^N~n)h      1 - (g/f)2e2MN-n)h • 

By the same argument used earlier, if our measurement interval does not include 
the region of the waveguide near the termination, then \(g/f)2e2jq(-N~n^h\ «C 1 
at all frequencies, and the standing wave ratio becomes 

C^/C^cg/f =2jg(N-n)h + {g/f)2e2^N-n)h - (g/f)2e4j{N-n» 

Upon averaging over the first several cells, the contributions of the oscillatory 
terms (which are small compared to one) approach zero, and 

c(-)/c« = (i/n)M-7cl+) 

n 

is a good measure of g/f. 

E.2.2    The Anisotropie Periodic Waveguide 

While the justifications for the use of a progressive Bloch wave model 
are valid for the isotropic periodic waveguide, the same cannot be said of the 
anisotropic waveguide. The reasons are manifold. As was shown in the last sec- 
tion, the use of a progressive wave model is valid provided (1), the amplitude of 
the backward traveling Bloch wave is small, and (2), the measurement interval 
is large. Where in the isotropic case we have \RB\ < 1 at all frequencies, in the 
anisotropic case \RB\ may be arbitrarily large. Because the waveguide is only 
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16 cycles in length, we cannot have both a large unmeasured interval (to allow 
the reflected Bloch wave to decay) and a large measured interval (to average 
out the oscillations). We therefore use the full least-squares procedure with a 

compound Bloch wave model. 

The least-squares procedure is outlined as follows. We begin with 
a set of nm measurements of the complex acoustic pressure amplitude. The 
measured pressure amplitude at the ith measurement location is pi, and the 
corresponding theoretical value based on the model is p{. The measure of error 
in the theoretical description of the field is taken to be 

% 

i=l 

The theoretical value of the pressure amplitude JH, and therefore x2 as well, 
is dependent upon the values of the various parameters (such as Re{<7(_)} or 
Im{g/fM}) that appear in the model. The set of parameter values for which 
X2 is a minimum are those for which the model fits the data in the least-square 
sense. These values of the parameters are considered to be the best estimates 

of their values. 

The minimization of x2 witn respect to the values of the parameters 
is the problem to be solved. If np is the number of real parameters that appear 
in the model, then we say that d is the ith such parameter, and the vector ( 
is the collection of all np parameters. We can express the dependence of x2 on 
the parameters in the functional sense x2 = X2(0 and think of x2 as being a 
scalar function in an np dimensional parameter space. The set of parameter 
values <fmin for which x2(C) is a minimum is that for which the best fit to the 
data has been achieved. In other words, we seek (min such that 

dx2 2, ,2 

= 0      and 
C=Cmin 

d2x 
dQ 

>0 

for alH = 1 ■ ■ -rip. 

The procedure used to find the value of the parameter vector ( for 
which x2 is a minimum is not the most elegant (num. rec), but is quite 
straightforward and certainly effective. The algorithm begins with a seeded set 
of parameter values and, holding all but a single parameter constant, finds the 
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value of the variable parameter for which x2 is minimum. The value of the 
parameter corresponding to the minimum is taken as the updated value of the 
parameter and the procedure is repeated for each parameter in the set. When 
X2 has been minimized with respect to each parameter, then every component 
of the parameter vector £ has been updated. The entire cycle is repeated until 
it is verified that, to within a reasonable tolerance, an absolute minimum has 
been found. 

While the least squares fit approach appears to be an ideal means for 
the simultaneous extraction of numerous parameter values from an arbitrary set 
of measurements, the procedure is likely to become unstable if it is implemented 
blindly. There are three fundamental stability problems. The first of these 
problems stems from a lack of information in the data with respect to one or 
more of the parameters. Consider the case wherein we allow all ten parameters 

(the real and imaginary parts of q(+\ q^~\ g/f^+\ g/fi~\ and RB) to vary. 
In the stopbands the forward traveling Bloch wave is rapidly attenuated and 
essentially no backward traveling Bloch wave is excited at the termination. 
The field, therefore, contains very little information with respect to q^ and 
g/f(~^. Field measurements, owing to their inherently limited dynamic range, 
may contain no information whatsoever with respect to these parameters and, 
as might be expected, the minimization algorithm becomes unstable. This 
stablility problem may be solved by performing two experiments instead of 
one. In the first of the two, the experiment is simply performed as described 
earlier. We have strong excitation of the forward traveling Bloch wave and the 
presence of information in the data regarding q^ and g/f^ is ensured. The 
periodic waveguide is then reversed and the experiment repeated. This ensures 
the strong excitation of the backward traveling Bloch wave and therefore the 
strong representation of information with respect to q^ and g/f^ in the 
data. 

The second stability problem occurs if the model has only a very weak 
dependence on the value of a varying parameter, such as g/f^ in the preceding 
example. As a result of the rapidly decaying field, large changes in the value 
°f g/f^ have very little effect on the resultant value of x2- The algorithm 
may find extremely unrealistic values of the parameter to optimize the fit to 
the measurement taken nearest the termination.   This problem is easily side 
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stepped by fixing the problematic parameters at their theoretical values. Such 
an approach is viable because, as a result of the first stability problem, we must 
perform separate experiments to gather forward and backward traveling Bloch 

wave data. 

The third stability problem is simply the inherent instability of a 
computationally practical minimum search algorithm when the measurement 
set is finite and the dimensionality of the parameter space is large. To contend 
with this problem, the data from both experiments described above is analyzed 
in two stages. In the first stage of the forward traveling Bloch wave experiment, 
only #(+) and RB (i.e., four real parameters) are allowed to vary; and the other 
six are fixed at their theoretical values. In the second stage q{+) is held fixed 
at its measured value, <?(-) and g/f{~] are held at their theoretical values, and 
g/f(+) and RB are allowed to vary. The same approach is used in the backward 
traveling Bloch wave experiment to detemine <7(-) and g/f^- 

E.3    The Bloch Wave Pulse Measurements 
The Bloch wave pulse measurements are made in the isotropic peri- 

odic waveguide system with a section of uniform waveguide inserted between 
the driver the and periodic waveguide. The narrowband pulse is therefore intro- 
duced into the uniform waveguide, where it propagates as a conventional wave 
pulse. This pulse is then incident upon the periodic waveguide, in which a 
Bloch wave pulse is excited. The reason for the section of uniform waveguide is 
to delay the incidence of the train of reflected pulses. The pulse that is incident 
upon the periodic waveguide is partially reflected back to the driver, where it is 
again reflected back towards the periodic waveguide. When the driver is loaded 
directly onto the periodic waveguide, these reflected pulses arrive immediately, 
and the resultant Bloch wave pulse is smeared. An alternative perspective is 
that the throat of the driver behaves roughly like a length of uniform wave- 
guide and therefore acts as a resonant tank, the frequency response of which 
colors the spectrum of the transmitted Bloch wave pulse. With the uniform 
waveguide inserted, the transmitted Bloch wave pulse is colored only by the 
Bloch wave transmission coefficient which, for narrowband pulses, causes much 
less severe coloration than the resonant tank. 
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The acoustic pressure associated with the Bloch wave pulses are mea- 
sured using the microphone in the flush mounted configuration (see Fig. E.2). 
The signal from the microphone is digitized and the data vector transferred to 
the computer. In order to measure the time of arrival of the pulse peak, which 
is the basis of the group velocity measurement, the envelope of the pulse must 
be detected (i.e., the pulse must be AM demodulated). In order to measure the 
frequency shift and frequency ramp rate of the pulse, the local frequency asso- 
ciated with the pulse must be found (i.e., the pulse must be FM demodulated). 
The objective of the pulse data analysis is therefore the AM/FM demodulation 
of the pulse time series. 

In order to AM/FM demodulate the pulse time series, a property of 
the Fourier transform is exploited. Consider the real signal f(t) with Fourier 
transform F(u). The signal is a narrowband pulse that is both amplitude and 
phase (or, equivalently, frequency) modulated and is therefore expressed 

f(t) = A(t)cos[u0t + (j)(t)}, 

where A(t) and (ß(t) are real. The goal is to find a straightforward method of 
extraction of the magnitude of the pulse envelope function \A(t)\ and the local 
frequency UJQ + (f>(t). The pulse spectrum is given by 

1 roo 1     foo 
F(w) = - /     A{t)e^i]ei{uJ+UJa)tdt + - /     A(t)e-i*®ei<u-"o)tdt 

2 J—oo 2 J—oo 

= -A(CJ - wo) + 2A*(^ + ^o)> 

where 
/oo 

A{t)e~m)dt 
-oo 

is the modulation spectrum. 

Consider now the truncated pulse spectrum 

Ft(u)   =   2F(u)H(u) 

=   H(u){A(u-u0) + A*(uj + uo)}, (E.5) 

where H(u) is the Heaviside or unit step function. If the pulse is of sufficiently 
narrow bandwidth (i.e., neither the amplitude nor the frequency modulation 
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is too strong), then the half spectrum A(u - u0) is nonzero only for positive 

frequencies and we have 
Ft(u) = A(u-u0). 

The signal associated with the truncated spectrum is given by 

1    f°° 
Ut) = ±J_ooFt{u)e->«t<L) 

1    f°° -t 
= — /    A(u - uo)e 3  du; 

= A(t)e-j["ot+m, 

which is referred to here as the "augmented" signal. Note first that f(t) = 
Re{/a(i)}. In other words, in the preceding process we have simply augmented 
the real signal f(t) with a nonzero imaginary part. The imaginary part is 
at each instant in time in phase quadrature with the real part. Owing to this 
augmentation, the amplitude and phase modulation of the signal may be found 
simply by calculation of the magnitude and phase of the augmented signal. The 
magnitude is simply 

1/aWI = \A(t)\, 

which is the pulse envelope, and the phase is simply 

£Mt) = -[uot + <Kt)]. (E.6) 

The local frequency of the pulse may be found simply by differentiation of 
Eq. E.6 with respect to time (see Eq. 5.42): 

This method of envelope and local frequency detection is extremely 
straightforward to implement. If we have a digitized signal, we simply perform 
a discrete Fourier transform on the time series vector and set the values that 
occupy the negative frequency bins of the resultant discrete spectrum to zero. 
We then inverse transform this truncated frequency spectrum vector to result 
in the augmented time series. The magnitude of this time series is the pulse 
envelope and the derivative of its phase is the local frequency. 
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